Magnetic Resonance Elastography of Upper Trapezius Muscle.

IF 2.7 4区 医学 Q2 BIOPHYSICS NMR in Biomedicine Pub Date : 2025-04-01 DOI:10.1002/nbm.70007
Emi Hojo, Wiraphong Sucharit, Saranya Jaruchainiwat, Punthip Thammaroj, Julaluck Promsorn, Prathana Chowchuen, Kevin J Glaser, Uraiwan Chatchawan, Neil Roberts
{"title":"Magnetic Resonance Elastography of Upper Trapezius Muscle.","authors":"Emi Hojo, Wiraphong Sucharit, Saranya Jaruchainiwat, Punthip Thammaroj, Julaluck Promsorn, Prathana Chowchuen, Kevin J Glaser, Uraiwan Chatchawan, Neil Roberts","doi":"10.1002/nbm.70007","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of the present study was to investigate the effect of positioning a soft flexible tube-based actuator parallel or orthogonal to the principle muscle fibre direction, on measurements of the stiffness of upper trapezius (UT) muscle obtained using magnetic resonance elastography (MRE). The effects of using three different vibration frequencies (60 Hz, 80 Hz and 100 Hz) and studying left and right sides of the body were also investigated. The relevant MRE datasets were acquired on a 1.5 T MRI system using a 2D gradient-echo (GRE) MRE sequence, and corresponding wave images produced using multimodel direct inversion (MMDI) were analysed by two observers using the manual caliper technique. Except for two of the 108 individual datasets, when the agreement was moderate, there was substantial to perfect agreement between wave quality scores obtained by the two observers, with an identical mean value. Similarly, and again with only two exceptions, there was good to excellent agreement between the measurements of UT stiffness obtained by the two observers. UT stiffness values obtained when the acoustic waves were propagating along the principle muscle fibre direction were significantly higher than when the waves were propagating orthogonal to the principle muscle fibre direction at all vibration frequencies (p < 0.005), and only for the former was a significant dispersion effect observed whereby stiffness increased as frequency increased (p < 0.05). No significant asymmetry was observed in measurements of UT stiffness obtained for the left and right sides of the body (p = 0.29). In conclusion, the new soft and flexible tube-based actuator is comfortable and produced very good wave propagation in UT when positioned in either orientation. However, it is recommended for wave propagation to be induced in the principle fibre direction and there was found to be no advantage in using a vibration frequency above 60 Hz.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 4","pages":"e70007"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the present study was to investigate the effect of positioning a soft flexible tube-based actuator parallel or orthogonal to the principle muscle fibre direction, on measurements of the stiffness of upper trapezius (UT) muscle obtained using magnetic resonance elastography (MRE). The effects of using three different vibration frequencies (60 Hz, 80 Hz and 100 Hz) and studying left and right sides of the body were also investigated. The relevant MRE datasets were acquired on a 1.5 T MRI system using a 2D gradient-echo (GRE) MRE sequence, and corresponding wave images produced using multimodel direct inversion (MMDI) were analysed by two observers using the manual caliper technique. Except for two of the 108 individual datasets, when the agreement was moderate, there was substantial to perfect agreement between wave quality scores obtained by the two observers, with an identical mean value. Similarly, and again with only two exceptions, there was good to excellent agreement between the measurements of UT stiffness obtained by the two observers. UT stiffness values obtained when the acoustic waves were propagating along the principle muscle fibre direction were significantly higher than when the waves were propagating orthogonal to the principle muscle fibre direction at all vibration frequencies (p < 0.005), and only for the former was a significant dispersion effect observed whereby stiffness increased as frequency increased (p < 0.05). No significant asymmetry was observed in measurements of UT stiffness obtained for the left and right sides of the body (p = 0.29). In conclusion, the new soft and flexible tube-based actuator is comfortable and produced very good wave propagation in UT when positioned in either orientation. However, it is recommended for wave propagation to be induced in the principle fibre direction and there was found to be no advantage in using a vibration frequency above 60 Hz.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
期刊最新文献
Determination of Tissue Potassium and Sodium Concentrations in Dystrophic Skeletal Muscle Tissue Using Combined Potassium (39K) and Sodium (23Na) MRI at 7 T. Correction to "B0 Magnetic Field Conditions in the Human Heart at 3 T Across One Thousand Subjects: A Numerical Simulation Study". Deuterium MRS for In Vivo Measurement of Lipogenesis in the Liver. Improved Fetal Magnetic Resonance Imaging Using a Flexible Metasurface. Magnetic Resonance Elastography of Upper Trapezius Muscle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1