{"title":"Experimental Quantum Simulation of Multicriticality in Closed and Open Rabi Model.","authors":"Ze Wu, Changsheng Hu, Tianyun Wang, Yuquan Chen, Yuchen Li, Liqiang Zhao, Xin-You Lü, Xinhua Peng","doi":"10.1103/PhysRevLett.133.173602","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum multicriticality not only has fundamental research significance but also can promote the development of emerging quantum technologies, owing to its rich phase transition mechanisms and quantum resources. While theoretical studies have predicted the multicritical phenomena in the light-matter systems, the experimental demonstration remains elusive for the challenges of achieving the system's ground or steady states in strong coupling regimes. Here, by implementing the quantum adiabatic algorithm and the dissipative-system variational quantum algorithm on nuclear magnetic resonance quantum simulator, we successfully demonstrate the tricritical phenomena both in the closed and open systems described by the two-axis Rabi model. The experimental results clearly show that, beyond the decoherence effect, dissipation leads to the emergence of a novel multicritical phenomenon: it splits the first-order phase transition line of the closed Rabi model, and doubles the tricritical point. Our work provides a feasible technique for engineering the open quantum systems and opens a new avenue for exploring nonequilibrium many-body physics.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 17","pages":"173602"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.173602","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum multicriticality not only has fundamental research significance but also can promote the development of emerging quantum technologies, owing to its rich phase transition mechanisms and quantum resources. While theoretical studies have predicted the multicritical phenomena in the light-matter systems, the experimental demonstration remains elusive for the challenges of achieving the system's ground or steady states in strong coupling regimes. Here, by implementing the quantum adiabatic algorithm and the dissipative-system variational quantum algorithm on nuclear magnetic resonance quantum simulator, we successfully demonstrate the tricritical phenomena both in the closed and open systems described by the two-axis Rabi model. The experimental results clearly show that, beyond the decoherence effect, dissipation leads to the emergence of a novel multicritical phenomenon: it splits the first-order phase transition line of the closed Rabi model, and doubles the tricritical point. Our work provides a feasible technique for engineering the open quantum systems and opens a new avenue for exploring nonequilibrium many-body physics.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks