Emerging Arabidopsis roots exhibit hypersensitive gravitropism associated with distinctive auxin synthesis and polar transport within the elongation zone
Xinyu Li, Jiahui Liu, Ziwei Li, Ai Chen, Ruoxin Zhao, Shi Xu, Xianyong Sheng
{"title":"Emerging Arabidopsis roots exhibit hypersensitive gravitropism associated with distinctive auxin synthesis and polar transport within the elongation zone","authors":"Xinyu Li, Jiahui Liu, Ziwei Li, Ai Chen, Ruoxin Zhao, Shi Xu, Xianyong Sheng","doi":"10.1016/j.plaphy.2024.109257","DOIUrl":null,"url":null,"abstract":"<div><div>Gravitropism is crucial for plants to secure light, water, and minerals essential for developing seedlings. Despite its importance, the gravitropism of young roots remains largely unexplored. Herein, we reported that the emerging <em>Arabidopsis</em> roots exhibit hypersensitive gravitropism compared to mature roots, growing relatively slowly but bending exceptionally rapidly. This rapid gravibending is characterized by substantial growth inhibition and a distinctive auxin accumulation on the lower side of the elongation zone. Intriguingly, surgical experiments suggest that these auxins predominantly originate from the elongation zone rather than from the shoot or root cap. However, their asymmetrical distribution is heavily modulated by the root cap. Confocal analysis of GFP-tagged TAA1 further confirms that gravitational stimulus induces active auxin biosynthesis in the elongation zone of nascent roots but not in mature roots. Furthermore, mutations in the PIN proteins, especially PIN2, severely impair the rapid gravitropic responses in emerging roots. Interestingly, PIN2 in nascent roots is not confined to the epidermis and cortex but extends to the endodermis, contrasting with its distribution in mature roots. Gravitational stimulation leads to a marked asymmetrical distribution of PIN2 between the upper and lower sides of the roots, which is strongly inhibited by surgical removal of the root cap. These observations indicate that gravitational stimulation triggers active auxin synthesis and PIN protein-mediated lateral transport within the elongation zone of emerging roots, resulting in swift gravitropic responses. These results offer an intriguing enhancement and expansion to the mechanism of root gravitropism.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109257"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824009252","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitropism is crucial for plants to secure light, water, and minerals essential for developing seedlings. Despite its importance, the gravitropism of young roots remains largely unexplored. Herein, we reported that the emerging Arabidopsis roots exhibit hypersensitive gravitropism compared to mature roots, growing relatively slowly but bending exceptionally rapidly. This rapid gravibending is characterized by substantial growth inhibition and a distinctive auxin accumulation on the lower side of the elongation zone. Intriguingly, surgical experiments suggest that these auxins predominantly originate from the elongation zone rather than from the shoot or root cap. However, their asymmetrical distribution is heavily modulated by the root cap. Confocal analysis of GFP-tagged TAA1 further confirms that gravitational stimulus induces active auxin biosynthesis in the elongation zone of nascent roots but not in mature roots. Furthermore, mutations in the PIN proteins, especially PIN2, severely impair the rapid gravitropic responses in emerging roots. Interestingly, PIN2 in nascent roots is not confined to the epidermis and cortex but extends to the endodermis, contrasting with its distribution in mature roots. Gravitational stimulation leads to a marked asymmetrical distribution of PIN2 between the upper and lower sides of the roots, which is strongly inhibited by surgical removal of the root cap. These observations indicate that gravitational stimulation triggers active auxin synthesis and PIN protein-mediated lateral transport within the elongation zone of emerging roots, resulting in swift gravitropic responses. These results offer an intriguing enhancement and expansion to the mechanism of root gravitropism.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.