Genome-wide characterization of pyrabactin resistance 1-like (PYL) family genes revealed AhPYL6 confer the resistance to Ralstonia solanacearum in peanut

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-11-14 DOI:10.1016/j.plaphy.2024.109295
Zenghui Cao , Zhan Li , Lin Meng, Di Cao, Kai Zhao, Sasa Hu, Yanzhe Li, Kunkun Zhao, Qian Ma, Yaoyao Li, Yi Fan, Xingli Ma, Fangping Gong, Zhongfeng Li, Ding Qiu, Lin Zhang, Xingguo Zhang, Rui Ren, Dongmei Yin
{"title":"Genome-wide characterization of pyrabactin resistance 1-like (PYL) family genes revealed AhPYL6 confer the resistance to Ralstonia solanacearum in peanut","authors":"Zenghui Cao ,&nbsp;Zhan Li ,&nbsp;Lin Meng,&nbsp;Di Cao,&nbsp;Kai Zhao,&nbsp;Sasa Hu,&nbsp;Yanzhe Li,&nbsp;Kunkun Zhao,&nbsp;Qian Ma,&nbsp;Yaoyao Li,&nbsp;Yi Fan,&nbsp;Xingli Ma,&nbsp;Fangping Gong,&nbsp;Zhongfeng Li,&nbsp;Ding Qiu,&nbsp;Lin Zhang,&nbsp;Xingguo Zhang,&nbsp;Rui Ren,&nbsp;Dongmei Yin","doi":"10.1016/j.plaphy.2024.109295","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial wilt (BW) caused by <em>Ralstonia solanacearum</em> severely impacts the yield and quality of peanut (<em>Arachis hypogaea</em> L.), a globally cultivated industrial crop. Despite the abscisic acid (ABA) signaling pathway have been identified as key factors in peanut resistance to BW, the molecular mechanism remains unclear. Through systematic identification, it was discovered that the peanut genome contains 18 ABA receptor pyrabactin resistance 1-like (PYL) family genes, which show conservation with other plant species. Among these <em>PYL</em> genes in peanut (referred to as <em>AhPYL</em>), <em>AhPYL6</em> and <em>AhPYL16</em> showed significant up-regulation in response to salicylic acid, jasmonic acid, ABA treatments, and <em>R. solanacearum</em> infection. Subsequently, the full-length <em>AhPYL6</em> was cloned and functionally characterized. The fusion protein AhPYL6-YFP was predominantly expressed in the cytoplasm and nucleus of tobacco leaves, and overexpression of <em>AhPYL6</em> notably enhanced resistance against <em>R. solanacearum</em>. Expression analysis revealed that the expression levels defense -related genes including <em>NbNPR1</em>, <em>NbPR2</em>, <em>NbPR3</em>, <em>NbHRS203</em>, <em>NbEFE26</em>, and <em>NbNDR1</em> were significantly up-regulated by the overexpression of <em>AhPYL6</em>, which suggested that <em>AhPYL6</em> confers the resistance to <em>R. solanacearum</em> through promoting expression of defense -related genes. These findings highlight the potential roles of PYL ABA receptors in the plant defense response to bacterial pathogens.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109295"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S098194282400963X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial wilt (BW) caused by Ralstonia solanacearum severely impacts the yield and quality of peanut (Arachis hypogaea L.), a globally cultivated industrial crop. Despite the abscisic acid (ABA) signaling pathway have been identified as key factors in peanut resistance to BW, the molecular mechanism remains unclear. Through systematic identification, it was discovered that the peanut genome contains 18 ABA receptor pyrabactin resistance 1-like (PYL) family genes, which show conservation with other plant species. Among these PYL genes in peanut (referred to as AhPYL), AhPYL6 and AhPYL16 showed significant up-regulation in response to salicylic acid, jasmonic acid, ABA treatments, and R. solanacearum infection. Subsequently, the full-length AhPYL6 was cloned and functionally characterized. The fusion protein AhPYL6-YFP was predominantly expressed in the cytoplasm and nucleus of tobacco leaves, and overexpression of AhPYL6 notably enhanced resistance against R. solanacearum. Expression analysis revealed that the expression levels defense -related genes including NbNPR1, NbPR2, NbPR3, NbHRS203, NbEFE26, and NbNDR1 were significantly up-regulated by the overexpression of AhPYL6, which suggested that AhPYL6 confers the resistance to R. solanacearum through promoting expression of defense -related genes. These findings highlight the potential roles of PYL ABA receptors in the plant defense response to bacterial pathogens.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对类似吡拉菌素抗性 1 (PYL) 家族基因的全基因组特性分析表明,AhPYL6 能赋予花生对茄尼氏菌 (Ralstonia solanacearum) 的抗性
由 Ralstonia solanacearum 引起的细菌性枯萎病(BW)严重影响了花生(Arachis hypogaea L.)的产量和质量,而花生是一种全球栽培的工业作物。尽管脱落酸(ABA)信号通路已被确定为花生抗BW的关键因素,但其分子机制仍不清楚。通过系统鉴定,发现花生基因组中含有 18 个 ABA 受体抗性 1-like pyrabactin(PYL)家族基因,这些基因与其他植物物种具有相同的保守性。在花生的这些PYL基因(简称为AhPYL)中,AhPYL6和AhPYL16在水杨酸、茉莉酸、ABA处理和茄碱酵母菌感染时表现出显著的上调。随后,全长的 AhPYL6 被克隆出来并进行了功能鉴定。融合蛋白AhPYL6-YFP主要在烟草叶片的细胞质和细胞核中表达,过表达AhPYL6可显著增强对茄碱菌的抗性。表达分析表明,AhPYL6的过表达显著上调了NbNPR1、NbPR2、NbPR3、NbHRS203、NbEFE26和NbNDR1等防御相关基因的表达水平,这表明AhPYL6是通过促进防御相关基因的表达来增强烟草对茄科细菌的抗性的。这些发现凸显了PYL ABA受体在植物对细菌病原体的防御反应中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Maize yield is associated with abscisic acid and water potential under reduced soil water supply but with indoleacetic acid in genotypic renewal The interaction effect of water deficit stress and nanosilicon on phytochemical and physiological characteristics of hemp (Cannabis sativa L.) Integrating physiological and transcriptomic analyses explored the regulatory mechanism of cold tolerance at seedling emergence stage in upland cotton (Gossypium hirsutum L.). Genome-wide characterization of pyrabactin resistance 1-like (PYL) family genes revealed AhPYL6 confer the resistance to Ralstonia solanacearum in peanut Ethyl acetate extract of Artemisia argyi improves the resistance of cotton to Verticillium dahliae by activating the immune response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1