An ODEs multiscale model with cell proliferation for hepatitis C virus infection treated with direct acting antiviral agents.

IF 1.8 4区 数学 Q3 ECOLOGY Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-11-13 DOI:10.1080/17513758.2024.2423956
Hesham A Elkaranshawy, Hossam M Ezzat
{"title":"An ODEs multiscale model with cell proliferation for hepatitis C virus infection treated with direct acting antiviral agents.","authors":"Hesham A Elkaranshawy, Hossam M Ezzat","doi":"10.1080/17513758.2024.2423956","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2423956"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2423956","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent study, a mathematically identical ODE model is derived from a multiscale PDE model of hepatitis C virus infection, which helps to overcome the limitations of the PDE model in the analysis. Here, an extended proposed model is formulated for this transformed ODE model by including the hepatocyte proliferation of both uninfected and infected cells. Unlike the transformed model, the proposed model can predict the triphasic viral decline and the virus level after therapy cessation without oscillations. Numerical simulations are performed to investigate the effect of hepatocyte proliferation and therapy with direct-acting antivirals agents (DAAs). The basic reproduction number is obtained, the equilibrium points are specified, and their stability is analysed. A bifurcation analysis is performed to specify the bifurcation points and to study the effect of varying system parameters. Various viral load profiles generated by the model are confirmed to fit with reported data in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用直接作用抗病毒药物治疗丙型肝炎病毒感染的细胞增殖 ODEs 多尺度模型。
在最近的一项研究中,从丙型肝炎病毒感染的多尺度 PDE 模型推导出了一个数学上相同的 ODE 模型,这有助于克服 PDE 模型在分析中的局限性。在此,通过将未感染和已感染细胞的肝细胞增殖包括在内,为这一转化的 ODE 模型制定了一个扩展的拟议模型。与转化模型不同的是,所提出的模型可以预测三相病毒下降和治疗停止后的病毒水平,而不会出现振荡。通过数值模拟研究了肝细胞增殖和直接作用抗病毒药物(DAAs)治疗的影响。得到了基本繁殖数,确定了平衡点,并分析了其稳定性。通过分岔分析,确定了分岔点,并研究了系统参数变化的影响。该模型生成的各种病毒载量曲线与文献报道的数据相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
期刊最新文献
Modeling and analysis of a multilayer solid tumour with cell physiological age and resource limitations. Optimal control strategies on HIV/AIDS and pneumonia co-infection with mathematical modelling approach. A stochastic multi-host model for West Nile virus transmission. Investigating the impact of vaccine hesitancy on an emerging infectious disease: a mathematical and numerical analysis. Optimal control of a multi-scale HIV-opioid model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1