Masis Isikbay , M.Travis Caton , Jared Narvid , Jason Talbott , Soonmee Cha , Evan Calabrese
{"title":"Deep learning segmentation-based bone removal from computed tomography of the brain improves subdural hematoma detection","authors":"Masis Isikbay , M.Travis Caton , Jared Narvid , Jason Talbott , Soonmee Cha , Evan Calabrese","doi":"10.1016/j.neurad.2024.101231","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Timely identification of intracranial blood products is clinically impactful, however the detection of subdural hematoma (SDH) on non-contrast CT scans of the head (NCCTH) is challenging given interference from the adjacent calvarium. This work explores the utility of a NCCTH bone removal algorithm for improving SDH detection.</div></div><div><h3>Methods</h3><div>A deep learning segmentation algorithm was designed/trained for bone removal using 100 NCCTH. Segmentation accuracy was evaluated on 15 NCCTH from the same institution and 22 NCCTH from an independent external dataset using quantitative overlap analysis between automated and expert manual segmentations. The impact of bone removal on detecting SDH by junior radiology trainees was evaluated with a reader study comparing detection performance between matched cases with and without bone removal applied.</div></div><div><h3>Results</h3><div>Average Dice overlap between automated and manual segmentations from the internal and external test datasets were 0.9999 and 0.9957, which was superior to other publicly available methods. Among trainee readers, SDH detection was statistically improved using NCCTH with and without bone removal applied compared to standard NCCTH alone (P value <0.001). Additionally, 12/14 (86 %) of participating trainees self-reported improved detection of extra axial blood products with bone removal, and 13/14 (93 %) indicated that they would like to have access to NCCTH bone removal in the on-call setting.</div></div><div><h3>Conclusion</h3><div>Deep learning segmentation-based NCCTH bone removal is rapid, accurate, and improves detection of SDH among trainee radiologists when used in combination with standard NCCTH. This study highlights the potential of bone removal for improving confidence and accuracy of SDH detection.</div></div>","PeriodicalId":50115,"journal":{"name":"Journal of Neuroradiology","volume":"52 1","pages":"Article 101231"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0150986124001585","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Timely identification of intracranial blood products is clinically impactful, however the detection of subdural hematoma (SDH) on non-contrast CT scans of the head (NCCTH) is challenging given interference from the adjacent calvarium. This work explores the utility of a NCCTH bone removal algorithm for improving SDH detection.
Methods
A deep learning segmentation algorithm was designed/trained for bone removal using 100 NCCTH. Segmentation accuracy was evaluated on 15 NCCTH from the same institution and 22 NCCTH from an independent external dataset using quantitative overlap analysis between automated and expert manual segmentations. The impact of bone removal on detecting SDH by junior radiology trainees was evaluated with a reader study comparing detection performance between matched cases with and without bone removal applied.
Results
Average Dice overlap between automated and manual segmentations from the internal and external test datasets were 0.9999 and 0.9957, which was superior to other publicly available methods. Among trainee readers, SDH detection was statistically improved using NCCTH with and without bone removal applied compared to standard NCCTH alone (P value <0.001). Additionally, 12/14 (86 %) of participating trainees self-reported improved detection of extra axial blood products with bone removal, and 13/14 (93 %) indicated that they would like to have access to NCCTH bone removal in the on-call setting.
Conclusion
Deep learning segmentation-based NCCTH bone removal is rapid, accurate, and improves detection of SDH among trainee radiologists when used in combination with standard NCCTH. This study highlights the potential of bone removal for improving confidence and accuracy of SDH detection.
期刊介绍:
The Journal of Neuroradiology is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of diagnostic and Interventional neuroradiology, translational and molecular neuroimaging, and artificial intelligence in neuroradiology.
The Journal of Neuroradiology considers for publication articles, reviews, technical notes and letters to the editors (correspondence section), provided that the methodology and scientific content are of high quality, and that the results will have substantial clinical impact and/or physiological importance.