Yang Zhang, Ting Yang, Yu Yang, Dongsheng Xu, Yucheng Hu, Shuo Zhang, Nanchao Luo, Lin Ning, Liping Ren
{"title":"siRNAEfficacyDB: An experimentally supported small interfering RNA efficacy database.","authors":"Yang Zhang, Ting Yang, Yu Yang, Dongsheng Xu, Yucheng Hu, Shuo Zhang, Nanchao Luo, Lin Ning, Liping Ren","doi":"10.1049/syb2.12102","DOIUrl":null,"url":null,"abstract":"<p><p>Small interfering RNA (siRNA) has revolutionised biomedical research and drug development through precise post-transcriptional gene silencing technology. Despite its immense potential, siRNA therapy still faces technical challenges, such as delivery efficiency, targeting specificity, and molecular stability. To address these challenges and facilitate siRNA drug development, we have developed siRNAEfficacyDB, a comprehensive database that integrates experimentally validated siRNA efficacy data. This database contains 3544 siRNA records, covering 42 target genes and 5 cell lines. It provides detailed information on siRNA sequences, target genes, inhibition efficiencies, experimental techniques, cell lines, siRNA concentrations, and incubation times. siRNAEfficacyDB offers a user-friendly web interface that makes it easy to query, browse and analyse data, enabling efficient access to siRNA-related information. In summary, siRNAEfficacyDB provides a useful data foundation for siRNA drug design and optimisation, serving as a valuable resource for advancing computer-aided siRNA design research and nucleic acid drug development. siRNAEfficacyDB is freely available at https://cellknowledge.com.cn/siRNAEfficacy for non-commercial use.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small interfering RNA (siRNA) has revolutionised biomedical research and drug development through precise post-transcriptional gene silencing technology. Despite its immense potential, siRNA therapy still faces technical challenges, such as delivery efficiency, targeting specificity, and molecular stability. To address these challenges and facilitate siRNA drug development, we have developed siRNAEfficacyDB, a comprehensive database that integrates experimentally validated siRNA efficacy data. This database contains 3544 siRNA records, covering 42 target genes and 5 cell lines. It provides detailed information on siRNA sequences, target genes, inhibition efficiencies, experimental techniques, cell lines, siRNA concentrations, and incubation times. siRNAEfficacyDB offers a user-friendly web interface that makes it easy to query, browse and analyse data, enabling efficient access to siRNA-related information. In summary, siRNAEfficacyDB provides a useful data foundation for siRNA drug design and optimisation, serving as a valuable resource for advancing computer-aided siRNA design research and nucleic acid drug development. siRNAEfficacyDB is freely available at https://cellknowledge.com.cn/siRNAEfficacy for non-commercial use.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.