SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2025-02-12 DOI:10.1049/syb2.70003
Gong Lejun, Yu Like, Wei Xinyi, Zhou Shehai, Xu Shuhua
{"title":"SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation","authors":"Gong Lejun,&nbsp;Yu Like,&nbsp;Wei Xinyi,&nbsp;Zhou Shehai,&nbsp;Xu Shuhua","doi":"10.1049/syb2.70003","DOIUrl":null,"url":null,"abstract":"<p>With the development of high-throughput sequencing technology, the analysis of single-cell RNA sequencing data has become the focus of current research. Matrix analysis and processing of downstream gene expression after preprocessing is a hot topic for researchers. This paper proposed an iterative block matrix completion algorithm, called SeqBMC, based on matrix factorisation. The algorithm is used to complete the missing value of the gene expression matrix caused by the defect of sequencing technology. The gene frequency of the matrix is used to block the matrix, and then the matrix factorisation algorithm is used to complete the small matrix after the block, and then the biological zeros that may exist in the block matrix are retained. Experimental results show that the matrix completion algorithm can significantly improve the classification performance of the gene expression matrix after completion with 86.81% F1 score, which is conducive to the recognition of cell types in sequencing data. Moreover, this completion method can be completed only by the machine learning method without too much prior knowledge related to biology and has good effects. Compared with ALRA, SeqBMC increased 5.47% accuracy and 5.03% F1 score. It indicates that SeqBMC has significant advantages in the matrix completion of single-cell RNA sequencing data.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of high-throughput sequencing technology, the analysis of single-cell RNA sequencing data has become the focus of current research. Matrix analysis and processing of downstream gene expression after preprocessing is a hot topic for researchers. This paper proposed an iterative block matrix completion algorithm, called SeqBMC, based on matrix factorisation. The algorithm is used to complete the missing value of the gene expression matrix caused by the defect of sequencing technology. The gene frequency of the matrix is used to block the matrix, and then the matrix factorisation algorithm is used to complete the small matrix after the block, and then the biological zeros that may exist in the block matrix are retained. Experimental results show that the matrix completion algorithm can significantly improve the classification performance of the gene expression matrix after completion with 86.81% F1 score, which is conducive to the recognition of cell types in sequencing data. Moreover, this completion method can be completed only by the machine learning method without too much prior knowledge related to biology and has good effects. Compared with ALRA, SeqBMC increased 5.47% accuracy and 5.03% F1 score. It indicates that SeqBMC has significant advantages in the matrix completion of single-cell RNA sequencing data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation StackAHTPs: An explainable antihypertensive peptides identifier based on heterogeneous features and stacked learning approach The optimised model of predicting protein-metal ion ligand binding residues Emergent robust oscillatory dynamics in the interlocked feedback-feedforward loops Microbiome analysis reveals the potential mechanism of herbal sitz bath complementary therapy in accelerating postoperative recovery from perianal abscesses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1