Katarzyna Skonieczna , Natasa Kovacevic-Grujicic , Aashish Srivastava , Mariusz Gawrych , Marzanna Ciesielka , Nisha Rana , Danijela Drakulic , Marija Mojsin , Milena Milivojevic , Milena Stevanovic , Grzegorz Teresiński , Tomasz Grzybowski
{"title":"Salivary microbiome signatures of Poles and Serbians and its potential for prediction of biogeographic ancestry","authors":"Katarzyna Skonieczna , Natasa Kovacevic-Grujicic , Aashish Srivastava , Mariusz Gawrych , Marzanna Ciesielka , Nisha Rana , Danijela Drakulic , Marija Mojsin , Milena Milivojevic , Milena Stevanovic , Grzegorz Teresiński , Tomasz Grzybowski","doi":"10.1016/j.fsigen.2024.103173","DOIUrl":null,"url":null,"abstract":"<div><div>Biogeographical ancestry analysis is valuable in forensic investigations, especially in missing person cases or crimes without eyewitnesses, as it helps to infer geographic origins from genetic markers. This approach enhances forensic efforts by providing essential clues for identifying individuals with limited direct evidence. Slavic-speaking populations are poorly distinguishable based on human genome variability. However, recent studies show that even populations with close biogeographic origin could be differentiated based on salivary microbiomes. Nevertheless, the salivary microbiomes of Slavs have not been characterized yet. Therefore, this study aimed to compare the composition of the salivary microbiomes of Western and Southern Slavs’ representatives. 16S rRNA libraries from salivary microbiomes of 40 Poles (Western Slavs) and 40 Serbians (Southern Slavs) were prepared <em>via</em> PCR and sequenced on the MiSeq FGx platform (Illumina), giving approximately 100,000 reads per sample. Bioinformatic and statistical analyses were performed to assess the alpha and beta diversity of microbiomes and determine the differences in the abundance of bacterial genera between the groups studied. Analyses of alpha (ACE, Chao1, Shannon, and Simpson) and beta (Jaccard and Bray-Curtis dissimilarity) diversities in the salivary microbiomes clearly distinguished between Poles and Serbians. Alpha and beta diversity metrics were significantly higher in the Serbian population. <em>Fusobacterium, Lautropia, Porphyromonas, Actinobacillus, Capnocytophaga</em>, and <em>Kingella</em> were the most significantly increased genera in Serbians, whereas <em>Veillonella, Selenomonas, Megasphaera,</em> and <em>Atopobium</em> were more prevalent in Poles. In summary, our study identified significant differences in the salivary microbiomes of Poles and Serbians, with distinct microbial signatures associated with each population. These findings highlight the potential of salivary microbiome analysis as a tool for predicting biogeographic ancestry. Nevertheless, further analysis extended to other Slavic-speaking populations is necessary to clarify this issue.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"74 ","pages":"Article 103173"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324001698","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Biogeographical ancestry analysis is valuable in forensic investigations, especially in missing person cases or crimes without eyewitnesses, as it helps to infer geographic origins from genetic markers. This approach enhances forensic efforts by providing essential clues for identifying individuals with limited direct evidence. Slavic-speaking populations are poorly distinguishable based on human genome variability. However, recent studies show that even populations with close biogeographic origin could be differentiated based on salivary microbiomes. Nevertheless, the salivary microbiomes of Slavs have not been characterized yet. Therefore, this study aimed to compare the composition of the salivary microbiomes of Western and Southern Slavs’ representatives. 16S rRNA libraries from salivary microbiomes of 40 Poles (Western Slavs) and 40 Serbians (Southern Slavs) were prepared via PCR and sequenced on the MiSeq FGx platform (Illumina), giving approximately 100,000 reads per sample. Bioinformatic and statistical analyses were performed to assess the alpha and beta diversity of microbiomes and determine the differences in the abundance of bacterial genera between the groups studied. Analyses of alpha (ACE, Chao1, Shannon, and Simpson) and beta (Jaccard and Bray-Curtis dissimilarity) diversities in the salivary microbiomes clearly distinguished between Poles and Serbians. Alpha and beta diversity metrics were significantly higher in the Serbian population. Fusobacterium, Lautropia, Porphyromonas, Actinobacillus, Capnocytophaga, and Kingella were the most significantly increased genera in Serbians, whereas Veillonella, Selenomonas, Megasphaera, and Atopobium were more prevalent in Poles. In summary, our study identified significant differences in the salivary microbiomes of Poles and Serbians, with distinct microbial signatures associated with each population. These findings highlight the potential of salivary microbiome analysis as a tool for predicting biogeographic ancestry. Nevertheless, further analysis extended to other Slavic-speaking populations is necessary to clarify this issue.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.