Integrative Metabolomic and Transcriptomic Analysis Provides Novel Insights into the Effects of SO2 on the Postharvest Quality of 'Munage' Table Grapes.

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Foods Pub Date : 2024-10-31 DOI:10.3390/foods13213494
Zhenliang Mou, Yuyao Yuan, Wei Wei, Yating Zhao, Bin Wu, Jianye Chen
{"title":"Integrative Metabolomic and Transcriptomic Analysis Provides Novel Insights into the Effects of SO<sub>2</sub> on the Postharvest Quality of 'Munage' Table Grapes.","authors":"Zhenliang Mou, Yuyao Yuan, Wei Wei, Yating Zhao, Bin Wu, Jianye Chen","doi":"10.3390/foods13213494","DOIUrl":null,"url":null,"abstract":"<p><p>Postharvest grapes exhibit a limited shelf life due to susceptibility to rot and deterioration, significantly reducing their nutritional and economic value. Sulfur dioxide (SO<sub>2</sub>) is a widely recognized preservative for extending grape storage life. This study performed a detailed analysis of 'Munage' table grapes treated with SO<sub>2</sub> fumigation, employing transcriptomic and metabolomic approaches. Results indicate that SO<sub>2</sub> fumigation significantly extends the shelf life of grapes, as demonstrated by improved visual quality, reduced decay rates, and increased fruit firmness. We identified 309 differentially accumulated metabolites (DAMs) and 1906 differentially expressed genes (DEGs), including 135 transcription factors (TFs). Both DEGs and DAMs showed significant enrichment of flavonoid-related metabolism compared with the control, and the relative content of four flavonoid metabolites (Wogonin-7-O-glucuronide, Acacetin-7-O-glucuronide, Apigenin-7-O-glucuronide, and Baicalein 7-O-glucuronide) were significantly increased in grapes upon SO<sub>2</sub> treatment, suggesting that SO<sub>2</sub> treatment had a substantial regulatory effect on grape flavonoid metabolism. Importantly, we constructed complex regulatory networks by screening key enzyme genes (e.g., <i>PAL</i>, <i>4CLs</i>, <i>CHS</i>, <i>CHI2</i>, and <i>UGT88F3</i>) related to the metabolism of target flavonoid, as well as potential regulatory transcription factors (TFs). Overall, our findings offer new insights into the regulatory mechanisms by which SO<sub>2</sub> maintains the postharvest quality of table grapes.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13213494","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Postharvest grapes exhibit a limited shelf life due to susceptibility to rot and deterioration, significantly reducing their nutritional and economic value. Sulfur dioxide (SO2) is a widely recognized preservative for extending grape storage life. This study performed a detailed analysis of 'Munage' table grapes treated with SO2 fumigation, employing transcriptomic and metabolomic approaches. Results indicate that SO2 fumigation significantly extends the shelf life of grapes, as demonstrated by improved visual quality, reduced decay rates, and increased fruit firmness. We identified 309 differentially accumulated metabolites (DAMs) and 1906 differentially expressed genes (DEGs), including 135 transcription factors (TFs). Both DEGs and DAMs showed significant enrichment of flavonoid-related metabolism compared with the control, and the relative content of four flavonoid metabolites (Wogonin-7-O-glucuronide, Acacetin-7-O-glucuronide, Apigenin-7-O-glucuronide, and Baicalein 7-O-glucuronide) were significantly increased in grapes upon SO2 treatment, suggesting that SO2 treatment had a substantial regulatory effect on grape flavonoid metabolism. Importantly, we constructed complex regulatory networks by screening key enzyme genes (e.g., PAL, 4CLs, CHS, CHI2, and UGT88F3) related to the metabolism of target flavonoid, as well as potential regulatory transcription factors (TFs). Overall, our findings offer new insights into the regulatory mechanisms by which SO2 maintains the postharvest quality of table grapes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢组和转录组的综合分析为了解二氧化硫对 "Munage "鲜食葡萄采后品质的影响提供了新的视角。
收获后的葡萄由于容易腐烂和变质,货架寿命有限,营养和经济价值大大降低。二氧化硫(SO2)是公认的延长葡萄贮藏期的防腐剂。本研究采用转录组学和代谢组学方法,对经过二氧化硫熏蒸处理的 "Munage "鲜食葡萄进行了详细分析。结果表明,二氧化硫熏蒸能显著延长葡萄的货架期,具体表现为改善视觉质量、降低腐烂率和提高果实硬度。我们发现了 309 种差异积累代谢物(DAMs)和 1906 个差异表达基因(DEGs),包括 135 个转录因子(TFs)。与对照组相比,DEGs和DAMs都显示出黄酮类相关代谢的显著富集,并且四种黄酮类代谢物(沃戈宁-7-O-葡萄糖醛酸苷、乙酰乙酸-7-O-葡萄糖醛酸苷、芹菜素-7-O-葡萄糖醛酸苷和黄芩素-7-O-葡萄糖醛酸苷)的相对含量在二氧化硫处理后显著增加,这表明二氧化硫处理对葡萄黄酮类代谢有实质性的调控作用。重要的是,我们通过筛选与目标类黄酮代谢相关的关键酶基因(如 PAL、4CLs、CHS、CHI2 和 UGT88F3)以及潜在的调控转录因子(TFs),构建了复杂的调控网络。总之,我们的研究结果为二氧化硫保持鲜食葡萄采后品质的调控机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
期刊最新文献
Food Public Opinion Prevention and Control Model Based on Sentiment Analysis. Will Food Safety Incidents Stimulate the Public's Desire for Food Safety Governance? Complexation with Alginate in Pumpkin Leaf Protein Solutions for the Encapsulation of Folic Acid: The Effect of Extraction Protocols. High-Energy Fluidic Microfluidizer Produced Whole Germinant Oat Milk: Effects on Physical Properties and Nutritional Quality. Development of Single-Nucleotide Polymorphism (SNP)-Based Species-Specific Real-Time PCR Assays for Authenticating Five Highly Priced Tuna.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1