Min Zhang;Jiamin Li;Jiliang Mo;Mingxue Shen;Zaiyu Xiang;Zhongrong Zhou
{"title":"High-Speed Train Brake Pads Condition Monitoring Based on Trade-Off Contrastive Learning Network","authors":"Min Zhang;Jiamin Li;Jiliang Mo;Mingxue Shen;Zaiyu Xiang;Zhongrong Zhou","doi":"10.1109/TIM.2024.3485406","DOIUrl":null,"url":null,"abstract":"The braking system of high-speed trains is directly related to the operation safety of the train. The brake pads, which play a crucial role, will inevitably undergo uneven wear in long-term use, posing safety hazards to train braking. As the trains are in normal operating condition for long periods, it is difficult to collect usable uneven wear data, and there is a situation of data imbalance. This article proposes a trade-off contrastive learning network (TCLN), utilizing the differences between data and balancing the weights of different classes, which can realize the condition monitoring under the data imbalance of brake pads. First, data augmentation is employed to provide sufficient and diverse data for contrastive learning, and nonlinear features are extracted by a quadratic convolutional neural network (QCNN). Then, the designed class-weighted method is utilized to improve the characterization ability of the minority class data and realize the equidistant representation of features for each class, which in turn achieves the purpose of paying equal attention to all classes. Finally, the effectiveness of the proposed method is verified using the dataset collected from the scaling experiments, and the results show that the proposed method has higher accuracy and efficiency compared to other methods, which can still accurately identify the brake pad condition when the data are highly imbalanced.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-10"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10745234/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The braking system of high-speed trains is directly related to the operation safety of the train. The brake pads, which play a crucial role, will inevitably undergo uneven wear in long-term use, posing safety hazards to train braking. As the trains are in normal operating condition for long periods, it is difficult to collect usable uneven wear data, and there is a situation of data imbalance. This article proposes a trade-off contrastive learning network (TCLN), utilizing the differences between data and balancing the weights of different classes, which can realize the condition monitoring under the data imbalance of brake pads. First, data augmentation is employed to provide sufficient and diverse data for contrastive learning, and nonlinear features are extracted by a quadratic convolutional neural network (QCNN). Then, the designed class-weighted method is utilized to improve the characterization ability of the minority class data and realize the equidistant representation of features for each class, which in turn achieves the purpose of paying equal attention to all classes. Finally, the effectiveness of the proposed method is verified using the dataset collected from the scaling experiments, and the results show that the proposed method has higher accuracy and efficiency compared to other methods, which can still accurately identify the brake pad condition when the data are highly imbalanced.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.