Vaibhav K. Raut, Sandeep B. Somvanshi, Elmuez A. Dawi, Chandrakant T. Birajdar
{"title":"“Sol-gel auto combustion synthesis of Al3+-Gd3+ ions co-doped cobalt ferrite nanoparticles for nanoelectronics applications”","authors":"Vaibhav K. Raut, Sandeep B. Somvanshi, Elmuez A. Dawi, Chandrakant T. Birajdar","doi":"10.1007/s10971-024-06571-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on investigating cobalt ferrite nanoparticles doped with trivalent Al<sup>3+</sup> and Gd<sup>3+</sup> ions across compositions ranging from CoFe<sub>2-2x</sub>Al<sub>x</sub>Gd<sub>x</sub>O<sub>4</sub> (x = 0.00, 0.02, 0.04, 0.06, 0.08). The nanoparticles were synthesized using the sol-gel auto-ignition method with citric acid as a chelating agent. Structural analysis via Rietveld-refined X-ray diffraction confirmed the formation of single-phase nanoparticles with a cubic spinel structure. Morphological examination through scanning electron microscopy revealed spherical-shaped grains. Elemental analysis using energy-dispersive X-ray analysis indicated consistent composition and high purity. Infrared spectra analysis verified the presence of characteristic modes typical of spinel ferrite structures. Magnetic properties assessed by vibrating sample magnetometry demonstrated soft magnetic behavior with lower coercivity. DC electrical resistivity measurements indicated a decrease in resistivity with increasing Al<sup>3+</sup>-Gd<sup>3+</sup> co-doping, while dielectric studies showed enhanced properties in this regard. Overall, the findings suggest that these co-doped cobalt ferrite nanoparticles hold promise for applications in magneto-electronic devices.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 3","pages":"738 - 751"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06571-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on investigating cobalt ferrite nanoparticles doped with trivalent Al3+ and Gd3+ ions across compositions ranging from CoFe2-2xAlxGdxO4 (x = 0.00, 0.02, 0.04, 0.06, 0.08). The nanoparticles were synthesized using the sol-gel auto-ignition method with citric acid as a chelating agent. Structural analysis via Rietveld-refined X-ray diffraction confirmed the formation of single-phase nanoparticles with a cubic spinel structure. Morphological examination through scanning electron microscopy revealed spherical-shaped grains. Elemental analysis using energy-dispersive X-ray analysis indicated consistent composition and high purity. Infrared spectra analysis verified the presence of characteristic modes typical of spinel ferrite structures. Magnetic properties assessed by vibrating sample magnetometry demonstrated soft magnetic behavior with lower coercivity. DC electrical resistivity measurements indicated a decrease in resistivity with increasing Al3+-Gd3+ co-doping, while dielectric studies showed enhanced properties in this regard. Overall, the findings suggest that these co-doped cobalt ferrite nanoparticles hold promise for applications in magneto-electronic devices.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.