Hazha Omar Othman, Kovan Dilawer Issa, Diyar Salahuddin Ali, Rebwar Omar Hassan, Esra Tariq Anwer, Sarhang Hayyas Mohammed, Muhammad Ahmad Qadir, Dana Sulaiman Ismail, Diyar Nawzad Omer, Slim Smaoui
{"title":"Enhancing nanomedicine with doped carbon quantum dots: a comprehensive review","authors":"Hazha Omar Othman, Kovan Dilawer Issa, Diyar Salahuddin Ali, Rebwar Omar Hassan, Esra Tariq Anwer, Sarhang Hayyas Mohammed, Muhammad Ahmad Qadir, Dana Sulaiman Ismail, Diyar Nawzad Omer, Slim Smaoui","doi":"10.1007/s11051-024-06180-3","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon quantum dots (CQDs) constitute one of the most important breakthroughs in biomedicine due to unique and highly beneficial characteristics that essentially include intrinsic fluorescence, high biocompatibility, cost-effective and scalable synthesis, water solubility, nanoscale size, low toxicity, and easy functional modification. Such features chaperone CQDs toward rather universal applicability in myriad biomedical domains where their performance has been proven across very diverse aspects. Especially, CQDs have been established as excellent nanocarriers for drug delivery applications, antimicrobial agents, carriers of therapeutic genes, and efficient photosensitizers used in photodynamic therapy. The diagnostic potential has been underlined by delivering successful results in applications of cellular and bacterial bioimaging with improved diagnostic precision. CQDs have further played an important role in advancing theragnostic nanomedicine that combines the therapeutic and diagnostic capabilities in one nanoparticle. Modifications, such as the functional group doping, improve specificity and efficiency more toward targeted biomedical applications. In this review, we try to look deeply into the significant role that CQDs play in the field of biomedicine and underline their transformational efficacy and specific potency in therapeutic as well as diagnostic applications.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06180-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon quantum dots (CQDs) constitute one of the most important breakthroughs in biomedicine due to unique and highly beneficial characteristics that essentially include intrinsic fluorescence, high biocompatibility, cost-effective and scalable synthesis, water solubility, nanoscale size, low toxicity, and easy functional modification. Such features chaperone CQDs toward rather universal applicability in myriad biomedical domains where their performance has been proven across very diverse aspects. Especially, CQDs have been established as excellent nanocarriers for drug delivery applications, antimicrobial agents, carriers of therapeutic genes, and efficient photosensitizers used in photodynamic therapy. The diagnostic potential has been underlined by delivering successful results in applications of cellular and bacterial bioimaging with improved diagnostic precision. CQDs have further played an important role in advancing theragnostic nanomedicine that combines the therapeutic and diagnostic capabilities in one nanoparticle. Modifications, such as the functional group doping, improve specificity and efficiency more toward targeted biomedical applications. In this review, we try to look deeply into the significant role that CQDs play in the field of biomedicine and underline their transformational efficacy and specific potency in therapeutic as well as diagnostic applications.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.