Zhuoying Zhu, Junsoo Park, Hrushikesh Sahasrabuddhe, Alex M. Ganose, Rees Chang, John W. Lawson, Anubhav Jain
{"title":"A high-throughput framework for lattice dynamics","authors":"Zhuoying Zhu, Junsoo Park, Hrushikesh Sahasrabuddhe, Alex M. Ganose, Rees Chang, John W. Lawson, Anubhav Jain","doi":"10.1038/s41524-024-01437-w","DOIUrl":null,"url":null,"abstract":"<p>We develop an automated high-throughput workflow for calculating lattice dynamical properties from first principles including those dictated by anharmonicity. The pipeline automatically computes interatomic force constants (IFCs) up to 4th order from perturbed training supercells, and uses the IFCs to calculate lattice thermal conductivity, coefficient of thermal expansion, and vibrational free energy and entropy. It performs phonon renormalization for dynamically unstable compounds to obtain real effective phonon spectra at finite temperatures and calculates the associated free energy corrections. The methods and parameters are chosen to balance computational efficiency and result accuracy, assessed through convergence testing and comparisons with experimental measurements. Deployment of this workflow at a large scale would facilitate materials discovery efforts toward functionalities including thermoelectrics, contact materials, ferroelectrics, aerospace components, as well as general phase diagram construction.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"246 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01437-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We develop an automated high-throughput workflow for calculating lattice dynamical properties from first principles including those dictated by anharmonicity. The pipeline automatically computes interatomic force constants (IFCs) up to 4th order from perturbed training supercells, and uses the IFCs to calculate lattice thermal conductivity, coefficient of thermal expansion, and vibrational free energy and entropy. It performs phonon renormalization for dynamically unstable compounds to obtain real effective phonon spectra at finite temperatures and calculates the associated free energy corrections. The methods and parameters are chosen to balance computational efficiency and result accuracy, assessed through convergence testing and comparisons with experimental measurements. Deployment of this workflow at a large scale would facilitate materials discovery efforts toward functionalities including thermoelectrics, contact materials, ferroelectrics, aerospace components, as well as general phase diagram construction.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.