Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-11-19 DOI:10.1038/s41524-024-01388-2
Jan Janssen, Edgar Makarov, Tilmann Hickel, Alexander V. Shapeev, Jörg Neugebauer
{"title":"Automated optimization and uncertainty quantification of convergence parameters in plane wave density functional theory calculations","authors":"Jan Janssen, Edgar Makarov, Tilmann Hickel, Alexander V. Shapeev, Jörg Neugebauer","doi":"10.1038/s41524-024-01388-2","DOIUrl":null,"url":null,"abstract":"<p>First principles approaches have revolutionized our ability in using computers to predict, explore, and design materials. A major advantage commonly associated with these approaches is that they are fully parameter-free. However, numerically solving the underlying equations requires to choose a set of convergence parameters. With the advent of high-throughput calculations, it becomes exceedingly important to achieve a truly parameter-free approach. Utilizing uncertainty quantification (UQ) and linear decomposition we derive a numerically highly efficient representation of the statistical and systematic error in the multidimensional space of the convergence parameters for plane wave density functional theory (DFT) calculations. Based on this formalism we implement a fully automated approach that requires as input the target precision rather than convergence parameters. The performance and robustness of the approach are shown by applying it to a large set of elements crystallizing in a cubic fcc lattice.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01388-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

First principles approaches have revolutionized our ability in using computers to predict, explore, and design materials. A major advantage commonly associated with these approaches is that they are fully parameter-free. However, numerically solving the underlying equations requires to choose a set of convergence parameters. With the advent of high-throughput calculations, it becomes exceedingly important to achieve a truly parameter-free approach. Utilizing uncertainty quantification (UQ) and linear decomposition we derive a numerically highly efficient representation of the statistical and systematic error in the multidimensional space of the convergence parameters for plane wave density functional theory (DFT) calculations. Based on this formalism we implement a fully automated approach that requires as input the target precision rather than convergence parameters. The performance and robustness of the approach are shown by applying it to a large set of elements crystallizing in a cubic fcc lattice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面波密度泛函理论计算中收敛参数的自动优化和不确定性量化
第一性原理方法彻底改变了我们利用计算机预测、探索和设计材料的能力。这些方法通常具有的一个主要优势是完全不需要参数。然而,对基础方程进行数值求解需要选择一组收敛参数。随着高通量计算的出现,实现真正的无参数方法变得极为重要。利用不确定性量化(UQ)和线性分解,我们得出了平面波密度泛函理论(DFT)计算收敛参数多维空间中统计和系统误差的高效数值表示。在此形式主义的基础上,我们实现了一种全自动方法,该方法需要输入目标精度而不是收敛参数。通过将该方法应用于立方 fcc 晶格中结晶的大量元素,展示了该方法的性能和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1