VI-VS: calibrated identification of feature dependencies in single-cell multiomics

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2024-11-15 DOI:10.1186/s13059-024-03419-z
Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef
{"title":"VI-VS: calibrated identification of feature dependencies in single-cell multiomics","authors":"Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef","doi":"10.1186/s13059-024-03419-z","DOIUrl":null,"url":null,"abstract":"Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"11 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03419-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VI-VS:校准识别单细胞多组学中的特征依赖性
利用机器学习模型从数据中揭示各种分子细胞表型之间的功能关系是多组学的一个关键承诺。现有的方法要么使用灵活但难以解释的模型,要么使用更简单但指定错误的模型。VI-VS(变量选择的变异推理)兼顾了灵活性和可解释性,可识别多组学数据中的相关特征关系。它使用深度生成模型来识别条件依赖特征,并控制误发现率。VI-VS 是一个开源的 Python 软件包,提供了一个强大的解决方案来识别更有可能代表真正因果关系的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Considerations in the search for epistasis Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. VI-VS: calibrated identification of feature dependencies in single-cell multiomics SND1 Promotes Radioresistance in Cervical Cancer Cells by Targeting the DNA Damage Response. CREaTor: zero-shot cis-regulatory pattern modeling with attention mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1