Enhanced Electrochemical Performance of NiSbS/NiSb/NiS Nanocomposites Anchored on Graphite Nanosheets for Sodium-Ion Battery Applications

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-15 DOI:10.1039/d4ta07323a
Shandong Huang, Dong Feng, Yuanzhi Zhu, Yihong Ding, Delong Xie, Yi Mei, Zeng tianbiao
{"title":"Enhanced Electrochemical Performance of NiSbS/NiSb/NiS Nanocomposites Anchored on Graphite Nanosheets for Sodium-Ion Battery Applications","authors":"Shandong Huang, Dong Feng, Yuanzhi Zhu, Yihong Ding, Delong Xie, Yi Mei, Zeng tianbiao","doi":"10.1039/d4ta07323a","DOIUrl":null,"url":null,"abstract":"In the realm of scalable fabrication of anodes through ball-milling, ensuring high electrochemical performance and robust cycling stability anodes for sodium-ion batteries is paramount but presents a formidable hurdle. In pursuit of these goals, a distinctive hybrid composite distinguished by its intricate multiphase composition have devised. This entails the integration of innovative NiSbS/NiSb/NiS nanomaterials onto exfoliated graphite nanosheets (Ni-Sb-S/GN) via a straightforward technique. Analyses indicates the interplay between graphite nanosheets and the hybrid Ni-Sb-S, in conjunction with the discharge byproducts of Na2S, substantially augment the stability and Na-ion diffusion kinetics of the Ni-Sb-S/GN anode. The novel Ni-Sb-S/GN exhibits markedly superior electrochemical performance in comparison to its Ni-Sb-S counterpart. Specifically, Ni-Sb-S/GN achieves a reversible capacity of 238.7 mAh g-1 at 0.2 A g-1 post 300 cycles, remains notable capacities of 200 mAh g-1 after 1000 cycles under 1 A g-1, respectively, translating to high capacity retention rates of 83.8% from the 2nd cycle. This contribution presents a novel avenue for the exploitation of advanced multiphase anodes exhibiting superior capacity, rate capability, and cycling durability.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07323a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of scalable fabrication of anodes through ball-milling, ensuring high electrochemical performance and robust cycling stability anodes for sodium-ion batteries is paramount but presents a formidable hurdle. In pursuit of these goals, a distinctive hybrid composite distinguished by its intricate multiphase composition have devised. This entails the integration of innovative NiSbS/NiSb/NiS nanomaterials onto exfoliated graphite nanosheets (Ni-Sb-S/GN) via a straightforward technique. Analyses indicates the interplay between graphite nanosheets and the hybrid Ni-Sb-S, in conjunction with the discharge byproducts of Na2S, substantially augment the stability and Na-ion diffusion kinetics of the Ni-Sb-S/GN anode. The novel Ni-Sb-S/GN exhibits markedly superior electrochemical performance in comparison to its Ni-Sb-S counterpart. Specifically, Ni-Sb-S/GN achieves a reversible capacity of 238.7 mAh g-1 at 0.2 A g-1 post 300 cycles, remains notable capacities of 200 mAh g-1 after 1000 cycles under 1 A g-1, respectively, translating to high capacity retention rates of 83.8% from the 2nd cycle. This contribution presents a novel avenue for the exploitation of advanced multiphase anodes exhibiting superior capacity, rate capability, and cycling durability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定在钠离子电池应用石墨纳米片上的 NiSbS/NiS/NiS 纳米复合材料的增强电化学性能
在通过球磨可扩展制造阳极的领域,确保钠离子电池阳极具有高电化学性能和强大的循环稳定性至关重要,但这也是一个巨大的障碍。为了实现这些目标,我们设计了一种独特的混合复合材料,其复杂的多相组成使其与众不同。这需要通过一种简单的技术将创新的镍锑/镍锑/镍硒纳米材料整合到剥离石墨纳米片(镍锑/镍硒/镍硒)上。分析表明,石墨纳米片和混合 Ni-Sb-S 之间的相互作用以及 Na2S 的放电副产物大大提高了 Ni-Sb-S/GN 阳极的稳定性和 Na 离子扩散动力学。与 Ni-Sb-S 阳极相比,新型 Ni-Sb-S/GN 阳极具有明显优越的电化学性能。具体地说,Ni-Sb-S/GN 在 0.2 A g-1 条件下循环 300 次后可获得 238.7 mAh g-1 的可逆容量,在 1 A g-1 条件下循环 1000 次后仍可获得 200 mAh g-1 的显著容量,从第二个循环开始,容量保持率高达 83.8%。这一贡献为开发先进的多相阳极提供了一条新途径,使其具有更高的容量、速率能力和循环耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Enhanced cycling performance of B-doped LiNi0.8Co0.1Mn0.1O2 cathodes prepared by the solid-state method Enhanced Electrochemical Performance of NiSbS/NiSb/NiS Nanocomposites Anchored on Graphite Nanosheets for Sodium-Ion Battery Applications Facile engineering of CoS/rGO heterostructures on carbon cloth for efficient all-pH hydrogen evolution reaction and alkaline water electrolysis Inverse analysis-guided development of acid-tolerant nanoporous high-entropy alloy catalysts for enhanced water-splitting performance Additive engineered SnO2-based electron transport layer for the robust and high-efficiency large-scale perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1