Yuxian Chen, Jiayi Rong, Qiaolin Fan, Meng Sun, Qiuyi Deng, Zhonghua Ni, Xiao Li, Tao Hu
{"title":"Facile engineering of CoS/rGO heterostructures on carbon cloth for efficient all-pH hydrogen evolution reaction and alkaline water electrolysis","authors":"Yuxian Chen, Jiayi Rong, Qiaolin Fan, Meng Sun, Qiuyi Deng, Zhonghua Ni, Xiao Li, Tao Hu","doi":"10.1039/d4ta06710j","DOIUrl":null,"url":null,"abstract":"Developing a cost-effective and commercially viable catalyst from non-noble metals that exhibits superior performance in both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) presents a significant challenge due to the distinct electrocatalytic mechanisms involved in each process. Herein, we engineered a three-dimensional, self-supporting heterostructure on carbon cloth (CC) using facile two-step electrodeposition, consisting of reduced graphene oxide (rGO) and cobalt sulfide (CoS), aimed at enhancing the efficiency of overall water electrolysis. The porous rGO network promoted the anchoring and vertical growth of CoS nanosheets, while the heterojunction between rGO and CoS enhanced the catalyst's stability remarkably. The CoS/rGO@CC catalyst exhibited extremely low overpotentials for both HER (η10=76.3 mV) and OER (η10=290.4 mV), maintaining these stable overpotentials for more than 24 hours, matching the performance of leading electrocatalysts based on noble metals. Moreover, by utilizing CoS/rGO@CC as both cathode and anode, we achieved overall water splitting with just 744 mV @10 mA cm-2. Theoretical calculations validated the synergistic effect of rGO and CoS nanosheets on enhancing HER and OER processes. Additionally, experimental data highlighted the CoS/rGO@CC catalyst's exceptional HER catalytic ability across varied pH levels, which provides a promising strategy to design low-cost and high-performance electrocatalysts for other energy-related applications.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06710j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a cost-effective and commercially viable catalyst from non-noble metals that exhibits superior performance in both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) presents a significant challenge due to the distinct electrocatalytic mechanisms involved in each process. Herein, we engineered a three-dimensional, self-supporting heterostructure on carbon cloth (CC) using facile two-step electrodeposition, consisting of reduced graphene oxide (rGO) and cobalt sulfide (CoS), aimed at enhancing the efficiency of overall water electrolysis. The porous rGO network promoted the anchoring and vertical growth of CoS nanosheets, while the heterojunction between rGO and CoS enhanced the catalyst's stability remarkably. The CoS/rGO@CC catalyst exhibited extremely low overpotentials for both HER (η10=76.3 mV) and OER (η10=290.4 mV), maintaining these stable overpotentials for more than 24 hours, matching the performance of leading electrocatalysts based on noble metals. Moreover, by utilizing CoS/rGO@CC as both cathode and anode, we achieved overall water splitting with just 744 mV @10 mA cm-2. Theoretical calculations validated the synergistic effect of rGO and CoS nanosheets on enhancing HER and OER processes. Additionally, experimental data highlighted the CoS/rGO@CC catalyst's exceptional HER catalytic ability across varied pH levels, which provides a promising strategy to design low-cost and high-performance electrocatalysts for other energy-related applications.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.