Effects of UV degradation on building materials with emphasis on microplastic generation potential

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2024-11-15 DOI:10.1016/j.jhazmat.2024.136521
Yujin Kang, Ho Hyeon Jo, Sumin Kim
{"title":"Effects of UV degradation on building materials with emphasis on microplastic generation potential","authors":"Yujin Kang, Ho Hyeon Jo, Sumin Kim","doi":"10.1016/j.jhazmat.2024.136521","DOIUrl":null,"url":null,"abstract":"This study investigates the effects of ultraviolet (UV) exposure on indoor building materials, focusing on color change, surface degradation, and chemical composition alterations. UV-exposed materials, quantitatively assessed using RGB and HSL color models, demonstrated progressive yellowing. Atomic force microscopy (AFM) measurements revealed significant surface deterioration in specific materials, indicating compromised protective coatings due to UV exposure.Chemical analyses via FT-IR and X-ray photoelectron spectroscopy confirmed increased oxygen content in these materials, suggesting oxidative processes affecting plastic components. Assessment of microplastic generation potential based on surface roughness data identified higher production rates in certain materials, raising concerns about the environmental implications of prolonged UV exposure indoors. Moreover, evaluating human health risks associated with indoor microplastic exposure highlighted elevated hazard indices for wallpapers and sheets, emphasizing potential risks from ingestion, inhalation, and dermal contact with microplastics. These findings underscore the necessity for enhanced approaches in architectural material design and regulation to mitigate these risks effectively.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136521","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of ultraviolet (UV) exposure on indoor building materials, focusing on color change, surface degradation, and chemical composition alterations. UV-exposed materials, quantitatively assessed using RGB and HSL color models, demonstrated progressive yellowing. Atomic force microscopy (AFM) measurements revealed significant surface deterioration in specific materials, indicating compromised protective coatings due to UV exposure.Chemical analyses via FT-IR and X-ray photoelectron spectroscopy confirmed increased oxygen content in these materials, suggesting oxidative processes affecting plastic components. Assessment of microplastic generation potential based on surface roughness data identified higher production rates in certain materials, raising concerns about the environmental implications of prolonged UV exposure indoors. Moreover, evaluating human health risks associated with indoor microplastic exposure highlighted elevated hazard indices for wallpapers and sheets, emphasizing potential risks from ingestion, inhalation, and dermal contact with microplastics. These findings underscore the necessity for enhanced approaches in architectural material design and regulation to mitigate these risks effectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外线降解对建筑材料的影响,重点是产生微塑料的可能性
本研究调查了紫外线(UV)照射对室内建筑材料的影响,重点关注颜色变化、表面降解和化学成分改变。使用 RGB 和 HSL 颜色模型对紫外线照射下的材料进行定量评估,结果表明这些材料会逐渐变黄。通过傅立叶变换红外光谱和 X 射线光电子能谱进行的化学分析证实,这些材料中的氧含量增加,表明氧化过程影响了塑料成分。根据表面粗糙度数据对微塑料生成潜力的评估发现,某些材料中的微塑料生成率较高,这引起了人们对室内长期紫外线照射对环境影响的关注。此外,在评估与室内微塑料接触相关的人体健康风险时,发现壁纸和床单的危害指数较高,强调了摄入、吸入和皮肤接触微塑料的潜在风险。这些发现突出表明,有必要加强建筑材料设计和监管方法,以有效降低这些风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Insights into the stability assessment and reaction mechanisms of Mn-oxide-containing adsorbents for As(Ⅲ) removal in filter columns: Migration laws and stabilization mechanisms of Mn element A Review of Hydroxyapatite Synthesis for Heavy Metal Adsorption Assisted by Machine Learning Fabrication of MOF-on-MOF composites by surfactant-assisted growth strategy for SPME of polycyclic aromatic hydrocarbons Short-term polystyrene nanoplastic exposure alters zebrafish male and female germ line and reproductive outcomes, unveiling pollutant-impacted molecular pathways Effects of UV degradation on building materials with emphasis on microplastic generation potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1