Deep learning-based algorithm for automatic quantification of nigrosome-1 and Parkinsonism classification using susceptibility map-weighted MRI.

Pae Sun Suh, Hwan Heo, Chong Hyun Suh, Myeong Oh Lee, Soohwa Song, Dong Hoon Shin, Sung Yang Jo, Sun Ju Chung, Hwon Heo, Woo Hyun Shim, Ho Sung Kim, Sang Joon Kim, Eung Yeop Kim
{"title":"Deep learning-based algorithm for automatic quantification of nigrosome-1 and Parkinsonism classification using susceptibility map-weighted MRI.","authors":"Pae Sun Suh, Hwan Heo, Chong Hyun Suh, Myeong Oh Lee, Soohwa Song, Dong Hoon Shin, Sung Yang Jo, Sun Ju Chung, Hwon Heo, Woo Hyun Shim, Ho Sung Kim, Sang Joon Kim, Eung Yeop Kim","doi":"10.3174/ajnr.A8585","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>To develop and validate a deep learning-based automatic quantification for nigral hyperintensity and a classification algorithm for neurodegenerative parkinsonism using susceptibility map-weighted imaging (SMwI).</p><p><strong>Materials and methods: </strong>We retrospectively collected 450 participants (210 with idiopathic Parkinson's disease [IPD] and 240 individuals in the control group) for training data between November 2022 and May 2023, and 237 participants (168 with IPD, 58 with essential tremor, and 11 with drug-induced Parkinsonism) for validation data between July 2021 and January 2022. SMwI data were reconstructed from multi-echo GRE. Diagnostic performance for diagnosing IPD was assessed using deep learning-based automatic quantification (Heuron NI) and classification (Heuron IPD) model. Reference standard for IPD was based on <sup>18</sup>F-FP-CIT PET finding. Additionally, the correlation between the H&Y stage and volume of nigral hyperintensity in patients with IPD was assessed.</p><p><strong>Results: </strong>Quantification of nigral hyperintensity using Heuron NI showed AUC of 0.915 (95% CI, 0.872-0.947) and 0.928 (95% CI, 0.887-0.957) on the left and right, respectively. Classification of nigral hyperintensity abnormality using Heuron IPD showed AUC of 0.967 (95% CI, 0.881-0.991) and 0.976 (95% CI, 0.948-0.992) on the left and right, respectively. H&Y score ≥ 3 showed significant smaller nigral hyperintensity volume (1.43 ± 1.19 mm<sup>3</sup>) compared to H&Y score 1-2.5 (1.98 ± 1.63 mm<sup>3</sup>; p = 0.008).</p><p><strong>Conclusions: </strong>Our deep learning-based model proves rapid, accurate automatic quantification of nigral hyperintensity, facilitating IPD diagnosis, symptom severity prediction, and patient stratification for personalized therapy. Further study is warranted to validate the findings across various clinical settings.</p><p><strong>Abbreviations: </strong>IPD = Idiopathic Parkinson's disease; SN = substantia nigra; SMwI = susceptibility map weighted imaging; QSM = quantitative susceptibility mapping; CNN = convolutional neural network; ICV = intracranial volume.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: To develop and validate a deep learning-based automatic quantification for nigral hyperintensity and a classification algorithm for neurodegenerative parkinsonism using susceptibility map-weighted imaging (SMwI).

Materials and methods: We retrospectively collected 450 participants (210 with idiopathic Parkinson's disease [IPD] and 240 individuals in the control group) for training data between November 2022 and May 2023, and 237 participants (168 with IPD, 58 with essential tremor, and 11 with drug-induced Parkinsonism) for validation data between July 2021 and January 2022. SMwI data were reconstructed from multi-echo GRE. Diagnostic performance for diagnosing IPD was assessed using deep learning-based automatic quantification (Heuron NI) and classification (Heuron IPD) model. Reference standard for IPD was based on 18F-FP-CIT PET finding. Additionally, the correlation between the H&Y stage and volume of nigral hyperintensity in patients with IPD was assessed.

Results: Quantification of nigral hyperintensity using Heuron NI showed AUC of 0.915 (95% CI, 0.872-0.947) and 0.928 (95% CI, 0.887-0.957) on the left and right, respectively. Classification of nigral hyperintensity abnormality using Heuron IPD showed AUC of 0.967 (95% CI, 0.881-0.991) and 0.976 (95% CI, 0.948-0.992) on the left and right, respectively. H&Y score ≥ 3 showed significant smaller nigral hyperintensity volume (1.43 ± 1.19 mm3) compared to H&Y score 1-2.5 (1.98 ± 1.63 mm3; p = 0.008).

Conclusions: Our deep learning-based model proves rapid, accurate automatic quantification of nigral hyperintensity, facilitating IPD diagnosis, symptom severity prediction, and patient stratification for personalized therapy. Further study is warranted to validate the findings across various clinical settings.

Abbreviations: IPD = Idiopathic Parkinson's disease; SN = substantia nigra; SMwI = susceptibility map weighted imaging; QSM = quantitative susceptibility mapping; CNN = convolutional neural network; ICV = intracranial volume.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的算法,利用易感图加权磁共振成像自动量化黑质组-1和帕金森病分类。
背景与目的:利用易感图加权成像(SMwI),开发并验证基于深度学习的黑质高密度自动量化和神经退行性帕金森病分类算法:我们在2022年11月至2023年5月期间回顾性收集了450名参与者(210名特发性帕金森病[IPD]患者和240名对照组患者)的训练数据,并在2021年7月至2022年1月期间收集了237名参与者(168名特发性帕金森病患者、58名本质性震颤患者和11名药物诱发帕金森病患者)的验证数据。SMwI 数据由多回波 GRE 重建。使用基于深度学习的自动量化(Heuron NI)和分类(Heuron IPD)模型评估了诊断 IPD 的诊断性能。IPD 的参考标准基于 18F-FP-CIT PET 发现。此外,还评估了IPD患者的H&Y分期与黑质高密度体积之间的相关性:结果:使用 Heuron NI 对黑质高密度进行量化显示,左侧和右侧的 AUC 分别为 0.915(95% CI,0.872-0.947)和 0.928(95% CI,0.887-0.957)。使用 Heuron IPD 对黑质高密度异常进行分类,左侧和右侧的 AUC 分别为 0.967(95% CI,0.881-0.991)和 0.976(95% CI,0.948-0.992)。与H&Y评分1-2.5(1.98 ± 1.63 mm3; p = 0.008)相比,H&Y评分≥3的黑质高密度体积(1.43 ± 1.19 mm3)明显较小:我们基于深度学习的模型能够快速、准确地自动量化黑质高密度,有助于 IPD 诊断、症状严重程度预测和个性化治疗的患者分层。还需要进一步研究,在各种临床环境中验证研究结果:缩写:IPD = 特发性帕金森病;SN = 黑质;SMwI = 易感图加权成像;QSM = 定量易感图;CNN = 卷积神经网络;ICV = 颅内容积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of Pretreatment Perfusion Imaging Parameters With 90-Day Excellent Functional Outcomes in Anterior Circulation Distal Medium Vessel Occlusion Stroke. Deep learning-based algorithm for automatic quantification of nigrosome-1 and Parkinsonism classification using susceptibility map-weighted MRI. High wall shear stress is related to complicated AHA lesion type VI plaques in mild to moderate internal carotid artery stenosis - a 3D cardiovascular MRI study. Prevalence of Spinal Meningeal Diverticula in Autosomal Dominant Polycystic Kidney Disease. Comprehensive Review of Inner Ear Anatomy on Photon-Counting CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1