Quantification of the Effect of Soil and Biophysical Parameters on Water Balance Modelling Using SWAT+ in Forested Catchments

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-11-10 DOI:10.1002/hyp.15332
Ehsan Qasemipour, Markus Pahlow, Thomas A. Cochrane, Clemens Altaner
{"title":"Quantification of the Effect of Soil and Biophysical Parameters on Water Balance Modelling Using SWAT+ in Forested Catchments","authors":"Ehsan Qasemipour,&nbsp;Markus Pahlow,&nbsp;Thomas A. Cochrane,&nbsp;Clemens Altaner","doi":"10.1002/hyp.15332","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate simulation of water balance components is crucial for effective water and land management practices. The performance of process-based hydrological models relies on the accurate determination of input variables. The objective of this study is to quantify the magnitude of the effect of soil properties (depth and texture) and biophysical parameters on water balance simulation for a forested catchment using the Soil and Water Assessment Tool (SWAT+). Simulations were carried out for a baseline scenario using the default soil inputs, followed by extending the soil profile depth up to 15 m under three different rainfall scenarios. Sensitivity analysis of model outputs was performed using the SENSitivity ANalysis (SENSAN) programme of the Parameter ESTimation (PEST) suite, coupled with SWAT+. The results showed that increasing soil profile depth to 15 m led to around 50% increase in water yield, and around 20% reduction in percolation with slight variations across the three rainfall scenarios. Evapotranspiration rates were slightly increased in deeper soil profiles. The sensitivity of evapotranspiration, surface runoff, and percolation to LAI-related biophysical parameters was pronounced, highlighting the need to include such parameters in SWAT+ model calibration. The water uptake from deeper soil layers by deep roots, even in rocky substrates, as documented in the literature, is not adequately captured by the SWAT+ model. Our work showed that in general, developing local soil databases with detailed information on deeper layers is needed, to improve the accuracy and reliability of hydrological models in predicting water fluxes, thereby supporting informed water resources management decisions.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15332","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate simulation of water balance components is crucial for effective water and land management practices. The performance of process-based hydrological models relies on the accurate determination of input variables. The objective of this study is to quantify the magnitude of the effect of soil properties (depth and texture) and biophysical parameters on water balance simulation for a forested catchment using the Soil and Water Assessment Tool (SWAT+). Simulations were carried out for a baseline scenario using the default soil inputs, followed by extending the soil profile depth up to 15 m under three different rainfall scenarios. Sensitivity analysis of model outputs was performed using the SENSitivity ANalysis (SENSAN) programme of the Parameter ESTimation (PEST) suite, coupled with SWAT+. The results showed that increasing soil profile depth to 15 m led to around 50% increase in water yield, and around 20% reduction in percolation with slight variations across the three rainfall scenarios. Evapotranspiration rates were slightly increased in deeper soil profiles. The sensitivity of evapotranspiration, surface runoff, and percolation to LAI-related biophysical parameters was pronounced, highlighting the need to include such parameters in SWAT+ model calibration. The water uptake from deeper soil layers by deep roots, even in rocky substrates, as documented in the literature, is not adequately captured by the SWAT+ model. Our work showed that in general, developing local soil databases with detailed information on deeper layers is needed, to improve the accuracy and reliability of hydrological models in predicting water fluxes, thereby supporting informed water resources management decisions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SWAT+,量化土壤和生物物理参数对森林集水区水平衡建模的影响
准确模拟水平衡的各个组成部分对于有效的水资源和土地管理实践至关重要。基于过程的水文模型的性能取决于输入变量的准确确定。本研究的目的是利用水土评估工具 (SWAT+) 量化土壤特性(深度和质地)和生物物理参数对森林集水区水平衡模拟的影响程度。在三种不同降雨情景下,使用默认土壤输入对基线情景进行模拟,然后将土壤剖面深度扩展至 15 米。使用参数ESTimation(PEST)套件中的敏感性分析(SENSAN)程序,结合 SWAT+ 对模型输出结果进行了敏感性分析。结果表明,将土壤剖面深度增加到 15 米可使产水量增加约 50%,渗漏量减少约 20%,但三种降雨情景略有不同。在较深的土壤剖面中,蒸散率略有增加。蒸散、地表径流和渗流对与 LAI 相关的生物物理参数的敏感性非常明显,这突出表明有必要在 SWAT+ 模型校准中纳入此类参数。根据文献记载,即使在岩石基质中,SWAT+ 模型也无法充分反映深层根系从土壤深层吸收水分的情况。我们的工作表明,一般来说,需要开发包含深层土壤详细信息的本地土壤数据库,以提高水文模型预测水通量的准确性和可靠性,从而为明智的水资源管理决策提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
A Comprehensive Evaluation of Agricultural Drought Vulnerability Using Fuzzy-AHP-Based Composite Index Integrating Sensitivity and Adaptive Capacity A Tale of Two Storms: Inter-Storm Variability of Stable Water Isotopes in a Solute Transport Model Geostatistical Interpolation Approach for Improving Flood Simulation Within a Data-Scarce Region in the Tibetan Plateau Assessing the Hydrological Response to Land Use Changes Linking SWAT and CA-Markov Models Parameterizing Haverkamp Model From the Steady-State of Numerically Generated Infiltration: Influence of Algorithms for Steady-State Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1