Agustin J. Olivo, Laura B. Klaiber, Kirsten Workman, Quirine M. Ketterings
{"title":"Characterization of phosphorus balances in corn silage fields from eight New York dairies","authors":"Agustin J. Olivo, Laura B. Klaiber, Kirsten Workman, Quirine M. Ketterings","doi":"10.1002/agj2.21710","DOIUrl":null,"url":null,"abstract":"<p>Optimizing phosphorus (P) application in corn (<i>Zea mays</i> L.) silage production systems to align with crop P requirements while sustaining soil test P (STP) levels can help mitigate environmental risks and enhance farm profitability. The objectives of this study were to characterize P balances of corn silage fields in New York, their drivers, relationships between P balances and field STP and nitrogen (N) balances, as well as the impact of manure application practices on balances. Field-level balances (supply–uptake) for P and N were derived for 994 field observations across eight dairy farms and 5 years. On average, P balances were low (11 kg P ha<sup>−1</sup>) with a wide range across farm averages (−11 to 30 kg P ha<sup>−1</sup>). Across farms, P was applied at higher rates to fields with adequate STP than to lower STP fields, indicating potential opportunities for reallocation of P within farms. Phosphorus balances were positively related to N balances. Manure nutrient utilization indicated that N-based applications would lead to large positive P balances in all farms. Phosphorus-based manure applications could cover on average 51% of corn N requirements under current farm manure application practices. This could be increased up to 85% when maximizing the utilization of manure inorganic N. Management alternatives to prevent excessive P balances include improving diet formulation to reduce P excretion, reducing animal density, exporting manure, implementing manure treatment technologies that conserve N and/or remove P, combining appropriate rates of manure and fertilizer, and maximizing manure inorganic N utilization in field applications.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"2990-3006"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21710","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing phosphorus (P) application in corn (Zea mays L.) silage production systems to align with crop P requirements while sustaining soil test P (STP) levels can help mitigate environmental risks and enhance farm profitability. The objectives of this study were to characterize P balances of corn silage fields in New York, their drivers, relationships between P balances and field STP and nitrogen (N) balances, as well as the impact of manure application practices on balances. Field-level balances (supply–uptake) for P and N were derived for 994 field observations across eight dairy farms and 5 years. On average, P balances were low (11 kg P ha−1) with a wide range across farm averages (−11 to 30 kg P ha−1). Across farms, P was applied at higher rates to fields with adequate STP than to lower STP fields, indicating potential opportunities for reallocation of P within farms. Phosphorus balances were positively related to N balances. Manure nutrient utilization indicated that N-based applications would lead to large positive P balances in all farms. Phosphorus-based manure applications could cover on average 51% of corn N requirements under current farm manure application practices. This could be increased up to 85% when maximizing the utilization of manure inorganic N. Management alternatives to prevent excessive P balances include improving diet formulation to reduce P excretion, reducing animal density, exporting manure, implementing manure treatment technologies that conserve N and/or remove P, combining appropriate rates of manure and fertilizer, and maximizing manure inorganic N utilization in field applications.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.