Idowu A. Atoloye, Shannon B. Cappellazzi, J. Earl Creech, Matt Yost, Wei Zhang, Astrid R. Jacobson, Jennifer R. Reeve
{"title":"Soil health benefits of compost persist two decades after single application to winter wheat","authors":"Idowu A. Atoloye, Shannon B. Cappellazzi, J. Earl Creech, Matt Yost, Wei Zhang, Astrid R. Jacobson, Jennifer R. Reeve","doi":"10.1002/agj2.21716","DOIUrl":null,"url":null,"abstract":"<p>The effectiveness of frequent compost application in improving soil health is well-documented. Less is known on the long-term effects of infrequent compost application to semiarid soils. Compost made of dairy manure and straw bedding was applied once in a dryland organic hard red winter wheat (<i>Triticum aestivum</i> L. emend. Thell.)–fallow system at 50 Mg ha<sup>−1</sup> dry wt. in 1994 in a randomized complete block design with three replicates. Twenty-eight years later, yields in composted plots (1.4 Mg ha<sup>−1</sup>) remained higher (<i>p</i> < 0.1) than in control plots (0.79 Mg ha<sup>−1</sup>). Plant-available P, acid phosphatase activity (ACP), and total N were higher in composted plots by 143%, 37%, and 29%. Soil organic carbon (SOC) and dehydrogenase enzyme activity were greater by 25% and 20% with compost compared to the control, as were aggregate stability determined using SLAKES method, autoclave-extractable protein, and CO<sub>2</sub>-96 h by 143%, 22%, and 16%. Soil extractable K and Zn also increased with compost application. The interaction of ACP and estimated evapotranspiration (ET) emerged as a pivotal factor in explaining the variation in yield. These findings suggest that growers may see some yield improvements from periodic compost applications to dryland organic winter wheat–fallow systems. This strategy could help rebuild SOC and partially counter the challenges of low and variable precipitation.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"2719-2734"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21716","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of frequent compost application in improving soil health is well-documented. Less is known on the long-term effects of infrequent compost application to semiarid soils. Compost made of dairy manure and straw bedding was applied once in a dryland organic hard red winter wheat (Triticum aestivum L. emend. Thell.)–fallow system at 50 Mg ha−1 dry wt. in 1994 in a randomized complete block design with three replicates. Twenty-eight years later, yields in composted plots (1.4 Mg ha−1) remained higher (p < 0.1) than in control plots (0.79 Mg ha−1). Plant-available P, acid phosphatase activity (ACP), and total N were higher in composted plots by 143%, 37%, and 29%. Soil organic carbon (SOC) and dehydrogenase enzyme activity were greater by 25% and 20% with compost compared to the control, as were aggregate stability determined using SLAKES method, autoclave-extractable protein, and CO2-96 h by 143%, 22%, and 16%. Soil extractable K and Zn also increased with compost application. The interaction of ACP and estimated evapotranspiration (ET) emerged as a pivotal factor in explaining the variation in yield. These findings suggest that growers may see some yield improvements from periodic compost applications to dryland organic winter wheat–fallow systems. This strategy could help rebuild SOC and partially counter the challenges of low and variable precipitation.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.