Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-16 DOI:10.1002/adma.202402987
Hanglong Wu, Hongyu Sun, Roy A. J. F. Oerlemans, Siyu Li, Jingxin Shao, Jianhong Wang, Rick R. M. Joosten, Xianwen Lou, Yingtong Luo, Hongkui Zheng, Loai K. E. A. Abdelmohsen, H. Hugo Pérez Garza, Jan C. M. van Hest, Heiner Friedrich
{"title":"Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy","authors":"Hanglong Wu, Hongyu Sun, Roy A. J. F. Oerlemans, Siyu Li, Jingxin Shao, Jianhong Wang, Rick R. M. Joosten, Xianwen Lou, Yingtong Luo, Hongkui Zheng, Loai K. E. A. Abdelmohsen, H. Hugo Pérez Garza, Jan C. M. van Hest, Heiner Friedrich","doi":"10.1002/adma.202402987","DOIUrl":null,"url":null,"abstract":"Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202402987","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated. Importantly, it is shown that the hydroxyl radical-rich environment in LP-TEM can be approximated by UV light irradiation in the presence of hydrogen peroxide, allowing the use of bulk techniques to probe damage at the polymer chain level. Finally, the protective effects of commonly used hydroxyl radical scavengers are compared, revealing that the effectiveness of graphene's protection is distance-dependent. The work provides detailed methodological guidance and establishes a baseline for polymer degradation in LP-TEM, paving the way for future research on nanoscale tracking of shape transitions and drug encapsulation of polymer assemblies in solution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在液相透射电子显微镜中了解、模拟和减轻聚合物的放射性损伤
液相透射电子显微镜(LP-TEM)技术的进步使人们能够在纳米尺度上监测溶液中的聚合物动态,但 LP-TEM 成像过程中的辐射损伤限制了其在聚合物科学中的常规应用。本研究的重点是了解、模拟和减轻在 LP-TEM 中观察到的功能聚合物的放射性损伤。研究定量展示了聚合物在所有可想象的(LP-)TEM 环境中发生的损伤,并阐明了聚合物在水蒸气和液态水中降解的主要特征和差异。重要的是,研究表明,LP-TEM 中富含羟基自由基的环境可以在过氧化氢存在的情况下通过紫外光照射来近似,从而可以使用大块技术来探测聚合物链级别的损伤。最后,比较了常用羟基自由基清除剂的保护效果,发现石墨烯的保护效果与距离有关。这项工作提供了详细的方法指导,并为 LP-TEM 中的聚合物降解建立了基线,为今后在溶液中对聚合物组装体的形状转变和药物封装进行纳米级跟踪研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Nanomaterial-Mediated Reprogramming of Macrophages to Inhibit Refractory Muscle Fibrosis Understanding, Mimicking, and Mitigating Radiolytic Damage to Polymers in Liquid Phase Transmission Electron Microscopy Fabrication of Ultrahigh‐Loading Dual Copper Sites in Nitrogen‐Doped Porous Carbons Boosting Electroreduction of CO2 to C2H4 Under Neutral Conditions Organic Nonvolatile 2T Memory Cell Employing a NOT-Gate-Like Architecture Toward Binary Output Level With Enhanced Noise Tolerance Engineering Triple-Phase Interfaces with Hierarchical Carbon Nanocages for High-Areal-Capacity All-Solid-State Li-S Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1