Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen
{"title":"High‐Entropy Phosphide Catalyst‐Based Hybrid Electrolyzer: A Cost‐Effective and Mild‐Condition Approach for H2 Liberation from Methanol","authors":"Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen","doi":"10.1002/aenm.202404114","DOIUrl":null,"url":null,"abstract":"Methanol as a hydrogen carrier provides a practical solution for H<jats:sub>2</jats:sub> storage and transport, but traditional reforming faces challenges with low efficiency, CO<jats:sub>2</jats:sub> emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm<jats:sup>−2</jats:sup> at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm<jats:sup>−2</jats:sup> and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H<jats:sub>2</jats:sub> stored in methanol but also establishes a new benchmark for sustainable and economically viable H<jats:sub>2</jats:sub> production.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methanol as a hydrogen carrier provides a practical solution for H2 storage and transport, but traditional reforming faces challenges with low efficiency, CO2 emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm−2 at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm−2 and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H2 stored in methanol but also establishes a new benchmark for sustainable and economically viable H2 production.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.