Solar-Driven Thin Air Gap Membrane Distillation with a Slippery Condensing Surface

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-16 DOI:10.1021/acs.est.4c06470
Hongxia Li, Aikifa Raza, Noora Ali AlMarzooqi, Meera AlMehrzi, Alaa Shaheen, Faisal AlMarzooqi, TieJun Zhang
{"title":"Solar-Driven Thin Air Gap Membrane Distillation with a Slippery Condensing Surface","authors":"Hongxia Li, Aikifa Raza, Noora Ali AlMarzooqi, Meera AlMehrzi, Alaa Shaheen, Faisal AlMarzooqi, TieJun Zhang","doi":"10.1021/acs.est.4c06470","DOIUrl":null,"url":null,"abstract":"Membrane-based desalination is essential for mitigating global water scarcity; yet, the process is energy-intensive and heavily reliant on fossil fuels, resulting in substantial carbon emissions. To address the challenges of treating seawater, produced water, brackish groundwater, and wastewater, we have developed a thin air gap membrane distillation (AGMD) system featuring a novel slippery condensing surface. The quasi-liquid slippery surface facilitates efficient condensate water droplet removal, allowing for the implementation of a 1 mm thin air gap. This advancement has led to a 2-fold increase in permeate flux without lowering the thermal efficiency while preventing permeate flooding. Furthermore, the thin AGMD system, employing a cost-effective zirconium nitride/poly(vinylidene fluoride) (ZrN-PVDF) composite membrane, has been demonstrated for solar-driven desalination. Experimental results indicate that reducing the air gap from 2 to 1 mm enhances the permeate flux by 150%.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06470","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-based desalination is essential for mitigating global water scarcity; yet, the process is energy-intensive and heavily reliant on fossil fuels, resulting in substantial carbon emissions. To address the challenges of treating seawater, produced water, brackish groundwater, and wastewater, we have developed a thin air gap membrane distillation (AGMD) system featuring a novel slippery condensing surface. The quasi-liquid slippery surface facilitates efficient condensate water droplet removal, allowing for the implementation of a 1 mm thin air gap. This advancement has led to a 2-fold increase in permeate flux without lowering the thermal efficiency while preventing permeate flooding. Furthermore, the thin AGMD system, employing a cost-effective zirconium nitride/poly(vinylidene fluoride) (ZrN-PVDF) composite membrane, has been demonstrated for solar-driven desalination. Experimental results indicate that reducing the air gap from 2 to 1 mm enhances the permeate flux by 150%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有滑动冷凝表面的太阳能驱动薄气隙膜蒸馏技术
膜法海水淡化对缓解全球水资源短缺问题至关重要;然而,该过程是能源密集型的,严重依赖化石燃料,导致大量碳排放。为了应对处理海水、生产用水、咸水地下水和废水的挑战,我们开发了一种薄气隙膜蒸馏(AGMD)系统,其特点是具有新颖的滑动冷凝表面。准液体滑动表面有助于有效去除冷凝水水滴,从而实现 1 毫米的薄气隙。这一进步使渗透通量增加了 2 倍,同时又不会降低热效率,还能防止渗透液泛滥。此外,采用经济高效的氮化锆/聚偏二氟乙烯(ZrN-PVDF)复合膜的薄型 AGMD 系统已在太阳能驱动的海水淡化中得到验证。实验结果表明,将气隙从 2 毫米减小到 1 毫米可使渗透通量提高 150%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Assessing Best Practices in Natural Gas Production and Emerging CO2 Capture Techniques to Minimize the Carbon Footprint of Electricity Generation Solar-Driven Thin Air Gap Membrane Distillation with a Slippery Condensing Surface Quantifying the Cooling Effect of Urban Greening Driven by Ecological Restoration Projects in China Cognitive Benefits of Reducing Indoor Particulate Matter Exposure During Sleep: New Evidence from a Randomized, Double-blind Crossover Trial Organophosphate Insecticide Malathion Induces Alzheimer’s Disease-Like Cognitive Impairment in Mice: Evidence of the Microbiota-Gut-Brain Axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1