Hairong Ma, Anna N. Khusnutdinova, Sofia Lemak, Tatyana N. Chernikova, Olga V. Golyshina, David Almendral, Manuel Ferrer, Peter N. Golyshin, Alexander F. Yakunin
{"title":"Polyesterase activity is widespread in the family IV carboxylesterases from bacteria","authors":"Hairong Ma, Anna N. Khusnutdinova, Sofia Lemak, Tatyana N. Chernikova, Olga V. Golyshina, David Almendral, Manuel Ferrer, Peter N. Golyshin, Alexander F. Yakunin","doi":"10.1016/j.jhazmat.2024.136540","DOIUrl":null,"url":null,"abstract":"Enzyme-based depolymerization of plastics, including polyesters, has emerged as a promising approach for plastic waste recycling and reducing environmental plastic pollution. Currently, most of the known polyester-degrading enzymes are represented by a few natural and engineered PETases from the carboxylesterase family V. To identify novel groups of polyesterases, we selected 25 proteins from the carboxylesterase family IV, which share 22% to 80% sequence identity to the metagenomic thermophilic polyesterase IS12. All purified proteins were found to be active against chromogenic <em>para</em>-nitrophenyl esters with a preference for short acyl chains. Screening for polyesterase activity using emulsified polyesters demonstrated the presence of hydrolytic activity against bis(benzoyloxyethyl) terephthalate (3PET), polycaprolactone (PCL), and polylactic acid (PLA) in all tested proteins. Biochemical characterization of four selected polyesterases revealed high thermostability in CBA10055, whereas the mesophilic GEN0105 exhibited higher polyesterase activity. Two ancestral variants of GEN0105 showed higher thermostability and activity against PCL and PLA, but reduced activity with amorphous PET. Furthermore, six established PETases were found to be highly active against PCL and PLA. Thus, our results indicate that polyesterase activity is widespread in the family IV carboxylesterases, and that most polyesterases are promiscuous being able to degrade different polyesters.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"98 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136540","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme-based depolymerization of plastics, including polyesters, has emerged as a promising approach for plastic waste recycling and reducing environmental plastic pollution. Currently, most of the known polyester-degrading enzymes are represented by a few natural and engineered PETases from the carboxylesterase family V. To identify novel groups of polyesterases, we selected 25 proteins from the carboxylesterase family IV, which share 22% to 80% sequence identity to the metagenomic thermophilic polyesterase IS12. All purified proteins were found to be active against chromogenic para-nitrophenyl esters with a preference for short acyl chains. Screening for polyesterase activity using emulsified polyesters demonstrated the presence of hydrolytic activity against bis(benzoyloxyethyl) terephthalate (3PET), polycaprolactone (PCL), and polylactic acid (PLA) in all tested proteins. Biochemical characterization of four selected polyesterases revealed high thermostability in CBA10055, whereas the mesophilic GEN0105 exhibited higher polyesterase activity. Two ancestral variants of GEN0105 showed higher thermostability and activity against PCL and PLA, but reduced activity with amorphous PET. Furthermore, six established PETases were found to be highly active against PCL and PLA. Thus, our results indicate that polyesterase activity is widespread in the family IV carboxylesterases, and that most polyesterases are promiscuous being able to degrade different polyesters.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.