{"title":"Reactivation of Industrial Spent Hydrocracking Catalyst for Tetralin Selective Hydrogenation and Ring-Opening","authors":"Junhao Liu, Xuchao Geng, Wenshuo Ma, Xiaohui Wang, Yue Hu, Jianye Fu, Lishuang Ma, Yuchao Lyu, Xinmei Liu","doi":"10.1021/acs.iecr.4c02996","DOIUrl":null,"url":null,"abstract":"Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO<sub>4</sub> phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c02996","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reactivation of industrial spent hydrocracking catalysts can reduce fresh catalyst consumption and hazardous waste emissions, generating significant economic and environmental benefits. However, seldom have reports on this subject been found. Herein, a solvent-induced coordinating method was developed to reactivate the industrial spent hydrocracking catalysts for tetralin selective hydrogenation and ring-opening to produce benzene, toluene, and xylene (BTX). The developed reactivation method could redisperse the aggregated Ni, Mo active phases and transform the inert β-NiMoO4 phases into the type II NiMoS active phases after sulfidation. The newly formed NiMoS active phases bear 2–3 stacking layers and short stacking lengths over the reactivated catalyst. Besides, the porous structure is reconstructed by removal of the framework aluminum (FAL) and the extra-framework aluminum (EFAL) from the support, and the acidity of the reactivated catalyst is enhanced by the introduction of Beta zeolite. Compared with the spent catalysts, the hydrocracking performance of the reactivated catalysts shows a significant improvement. The tetralin conversion is 83% with a BTX selectivity of 48%, which is comparable to the performance of the freshly prepared catalysts reported in the literature. This work provides a new idea for the resource utilization of spent hydrocracking catalysts.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.