Crystallographic Reorientation Induced by Gradient Solid‐Electrolyte Interphase for Highly Stable Zinc Anode

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-16 DOI:10.1002/adma.202412667
Ming Zhao, Yanqun Lv, Jun Qi, Yong Zhang, Yadong Du, Qi Yang, Yunkai Xu, Jieshan Qiu, Jun Lu, Shimou Chen
{"title":"Crystallographic Reorientation Induced by Gradient Solid‐Electrolyte Interphase for Highly Stable Zinc Anode","authors":"Ming Zhao, Yanqun Lv, Jun Qi, Yong Zhang, Yadong Du, Qi Yang, Yunkai Xu, Jieshan Qiu, Jun Lu, Shimou Chen","doi":"10.1002/adma.202412667","DOIUrl":null,"url":null,"abstract":"Oriented zinc (Zn) electrodeposition is critical for the long‐term performance of aqueous Zn metal batteries. However, the intricate interfacial reactions between the Zn anode and electrolytes hinder a comprehensive understanding of Zn metal deposition. Here, the reaction pathways of Zn deposition and report the preferential formation of Zn single‐crystalline nuclei followed by dense Zn(002) deposition is elucidated, which is induced by a gradient solid‐electrolyte interphase (SEI). The gradient SEI composed of abundant B‐O and C species facilitates faster Zn<jats:sup>2+</jats:sup> nucleation rate and smaller nucleus size, promoting the formation of Zn single‐crystalline nuclei. Additionally, the homogeneity and mechanical stability of SEI ensure the crystallographic reorientation of Zn anodes from Zn(101) to (002) planes, efficiently inhibiting dendrite growth and metal corrosion during the Zn<jats:sup>2+</jats:sup> stripping/plating process. These advantages significantly enhance the stability of the Zn anode, as demonstrated by the prolonged cycling lifespan of symmetric Zn batteries and exceptional reversibility (&gt;99.5%) over 5000 cycles in Zn//Cu asymmetric batteries. Notably, this strategy also enables the stable operation of anode‐free Zn//I<jats:sub>2</jats:sub> batteries with a long lifespan of 3000 cycles. This work advances the understanding of Zn electrochemical behaviors, encompassing Zn nucleation, growth, and Zn<jats:sup>2+</jats:sup> stripping/plating.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"247 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oriented zinc (Zn) electrodeposition is critical for the long‐term performance of aqueous Zn metal batteries. However, the intricate interfacial reactions between the Zn anode and electrolytes hinder a comprehensive understanding of Zn metal deposition. Here, the reaction pathways of Zn deposition and report the preferential formation of Zn single‐crystalline nuclei followed by dense Zn(002) deposition is elucidated, which is induced by a gradient solid‐electrolyte interphase (SEI). The gradient SEI composed of abundant B‐O and C species facilitates faster Zn2+ nucleation rate and smaller nucleus size, promoting the formation of Zn single‐crystalline nuclei. Additionally, the homogeneity and mechanical stability of SEI ensure the crystallographic reorientation of Zn anodes from Zn(101) to (002) planes, efficiently inhibiting dendrite growth and metal corrosion during the Zn2+ stripping/plating process. These advantages significantly enhance the stability of the Zn anode, as demonstrated by the prolonged cycling lifespan of symmetric Zn batteries and exceptional reversibility (>99.5%) over 5000 cycles in Zn//Cu asymmetric batteries. Notably, this strategy also enables the stable operation of anode‐free Zn//I2 batteries with a long lifespan of 3000 cycles. This work advances the understanding of Zn electrochemical behaviors, encompassing Zn nucleation, growth, and Zn2+ stripping/plating.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梯度固体-电解质互相诱导的晶体重新定向,实现高稳定性锌阳极
定向锌(Zn)电沉积对于锌金属水电池的长期性能至关重要。然而,锌阳极与电解质之间错综复杂的界面反应阻碍了对锌金属沉积的全面了解。本文阐明了锌沉积的反应途径,并报告了由梯度固体-电解质间相(SEI)诱导的锌单晶核的优先形成以及随后的致密锌(002)沉积。由丰富的 B-O 和 C 物种组成的梯度 SEI 有利于加快 Zn2+ 成核速度并缩小核尺寸,从而促进 Zn 单晶核的形成。此外,SEI 的均匀性和机械稳定性确保了 Zn 阳极从 Zn(101)平面到(002)平面的晶体学重新定向,从而有效抑制了 Zn2+ 剥离/电镀过程中的枝晶生长和金属腐蚀。这些优势大大提高了锌阳极的稳定性,对称锌电池循环寿命的延长和锌/铜不对称电池超过 5000 次循环的超常可逆性(99.5%)都证明了这一点。值得注意的是,这种策略还能使无阳极 Zn//I2 电池稳定运行,寿命长达 3000 次循环。这项研究加深了人们对锌电化学行为的理解,包括锌的成核、生长和 Zn2+ 剥离/电镀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Subtle Tuning of Catalytic Well Effect in Phthalocyanine Covalent Organic Frameworks for Selective CO2 Electroreduction into C2H4 Reversible Anion‐Cation Relay‐Intercalation in a T‐MnO2 Cathode to Boost the Efficiency of Aqueous Dual‐Ion Batteries Ferroelectric Perovskite/MoS2 Channel Heterojunctions for Wide‐Window Nonvolatile Memory and Neuromorphic Computing High Electrical Conductance in Magnetic Emission Junction of Fe3GeTe2/ZnO/Ni Heterostructure via Selective Spin Emission through ZnO Ohmic Barrier Thermal‐Assisted Dry Coating Electrode Unlocking Sustainable and High‐Performance Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1