Weifan Luo, José María Andrés Castán, Diego Mirani, Antonio J. Riquelme, Amit Kumar Sachan, Olzhas Kurman, SunJu Kim, Fabiola Faini, Paul Zimmermann, Alexander Hinderhofer, Yash Patel, Aaron T. Frei, Jacques-E. Moser, Daniel Ramirez, Frank Schreiber, Pascale Maldivi, Ji-Youn Seo, Wolfgang Tress, Giulia Grancini, Renaud Demadrille, Jovana V. Milić
{"title":"Photochromic Control in Hybrid Perovskite Photovoltaics","authors":"Weifan Luo, José María Andrés Castán, Diego Mirani, Antonio J. Riquelme, Amit Kumar Sachan, Olzhas Kurman, SunJu Kim, Fabiola Faini, Paul Zimmermann, Alexander Hinderhofer, Yash Patel, Aaron T. Frei, Jacques-E. Moser, Daniel Ramirez, Frank Schreiber, Pascale Maldivi, Ji-Youn Seo, Wolfgang Tress, Giulia Grancini, Renaud Demadrille, Jovana V. Milić","doi":"10.1002/adma.202420143","DOIUrl":null,"url":null,"abstract":"The application of perovskite photovoltaics is hampered by issues related to the operational stability upon exposure to external stimuli, such as voltage bias and light. The dynamic control of the properties of perovskite materials in response to light could ensure the durability of perovskite solar cells, which is especially critical at the interface with charge-extraction layers. We have applied a functionalized photochromic material based on spiro-indoline naphthoxazine at the interface with hole-transport layers in the corresponding perovskite solar cells with the aim of stabilizing them in response to voltage bias and light. We demonstrate photoinduced transformation by a combination of techniques, including transient absorption spectroscopy and Kelvin probe force microscopy. As a result, the application of the photochromic derivative offers improvements in photovoltaic performance and operational stability, highlighting the potential of dynamic photochromic strategies in perovskite photovoltaics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"183 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202420143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of perovskite photovoltaics is hampered by issues related to the operational stability upon exposure to external stimuli, such as voltage bias and light. The dynamic control of the properties of perovskite materials in response to light could ensure the durability of perovskite solar cells, which is especially critical at the interface with charge-extraction layers. We have applied a functionalized photochromic material based on spiro-indoline naphthoxazine at the interface with hole-transport layers in the corresponding perovskite solar cells with the aim of stabilizing them in response to voltage bias and light. We demonstrate photoinduced transformation by a combination of techniques, including transient absorption spectroscopy and Kelvin probe force microscopy. As a result, the application of the photochromic derivative offers improvements in photovoltaic performance and operational stability, highlighting the potential of dynamic photochromic strategies in perovskite photovoltaics.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.