{"title":"In‐Plane Chirality Control of a Charge Density Wave by Means of Shear Stress","authors":"Weiyan Qi, Stefano Ponzoni, Guénolé Huitric, Romain Grasset, Yannis Laplace, Laurent Cario, Alberto Zobelli, Marino Marsi, Evangelos Papalazarou, Alexandr Alekhin, Yann Gallais, Azzedine Bendounan, Suk Hyun Sung, Noah Schnitzer, Berit Hansen Goodge, Robert Hovden, Luca Perfetti","doi":"10.1002/adma.202410950","DOIUrl":null,"url":null,"abstract":"The transition metal dichalcogenide 1T‐TaS<jats:sub>2</jats:sub> exhibits a Charge Density Wave (CDW) with in‐plane chirality. Due to the rich phase diagram, the Ferro‐Rotational Order (FRO) can be tuned by external stimuli. The FRO is studied by Angle‐Resolved Photoelectron Spectroscopy (ARPES), Raman spectroscopy, and Selected Area Electron Diffraction (SAED). The in‐plane chirality of the CDW is lost at the transition from Nearly‐Commensurate (NC) to In‐Commensurate (IC) phase and can be controlled by applying shear stress to the sample while cooling it through the transition from IC‐CDW to NC‐CDW. Based on these observations, a protocol is proposed to achieve reliable, non‐volatile state switching of the FRO configuration in 1T‐TaS<jats:sub>2</jats:sub> bulk crystals. These results pave the way for new functional devices in which in‐plane chirality can be set on demand.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"83 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410950","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition metal dichalcogenide 1T‐TaS2 exhibits a Charge Density Wave (CDW) with in‐plane chirality. Due to the rich phase diagram, the Ferro‐Rotational Order (FRO) can be tuned by external stimuli. The FRO is studied by Angle‐Resolved Photoelectron Spectroscopy (ARPES), Raman spectroscopy, and Selected Area Electron Diffraction (SAED). The in‐plane chirality of the CDW is lost at the transition from Nearly‐Commensurate (NC) to In‐Commensurate (IC) phase and can be controlled by applying shear stress to the sample while cooling it through the transition from IC‐CDW to NC‐CDW. Based on these observations, a protocol is proposed to achieve reliable, non‐volatile state switching of the FRO configuration in 1T‐TaS2 bulk crystals. These results pave the way for new functional devices in which in‐plane chirality can be set on demand.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.