Wenpei Zheng , Tong Li , Qi Jing , Sheng Qi , Yuntao Li
{"title":"Real-time quantitative risk analysis and routing optimization of gaseous hydrogen tube trailer transport: A Bayesian network and Dijkstra algorithm combining approach","authors":"Wenpei Zheng , Tong Li , Qi Jing , Sheng Qi , Yuntao Li","doi":"10.1016/j.psep.2024.10.110","DOIUrl":null,"url":null,"abstract":"<div><div>With increasing global energy demand, the volume and scale of hydrogen energy transportation are also on the rise. Gaseous hydrogen tube trailers, as the most flexible mode of hydrogen transport, present risk characteristics such as dynamism, suddenness, and potential for severe consequences. However, current methods for real-time risk assessment and route optimization during transportation are limited, lacking in both efficiency and accuracy. To address this issue, we propose a comprehensive and novel real-time risk assessment and path optimization system for gaseous hydrogen tube trailer transport. The System Theory Process Analysis (STPA) method is employed to identify risk factors associated with this transport modality. We combine a Bayesian network model with real-time observational data to derive dynamic failure probabilities for various routes. The potential consequences of transportation accidents are calculated using a computational model and computational fluid dynamics (CFD). By analyzing population density along the routes, we estimate the number of fatalities resulting from accidents, leading to a dynamic assessment of accident consequences. Finally, we consider societal impacts, economic costs, time costs, carbon emissions, the proximity to environmentally sensitive areas, and locations prone to fire and explosion hazards to select the optimal transportation route using Dijkstra's algorithm. The findings of this research will provide valuable insights for the safe management and sustainable development of gaseous hydrogen tube trailer transport.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 1205-1220"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024013983","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With increasing global energy demand, the volume and scale of hydrogen energy transportation are also on the rise. Gaseous hydrogen tube trailers, as the most flexible mode of hydrogen transport, present risk characteristics such as dynamism, suddenness, and potential for severe consequences. However, current methods for real-time risk assessment and route optimization during transportation are limited, lacking in both efficiency and accuracy. To address this issue, we propose a comprehensive and novel real-time risk assessment and path optimization system for gaseous hydrogen tube trailer transport. The System Theory Process Analysis (STPA) method is employed to identify risk factors associated with this transport modality. We combine a Bayesian network model with real-time observational data to derive dynamic failure probabilities for various routes. The potential consequences of transportation accidents are calculated using a computational model and computational fluid dynamics (CFD). By analyzing population density along the routes, we estimate the number of fatalities resulting from accidents, leading to a dynamic assessment of accident consequences. Finally, we consider societal impacts, economic costs, time costs, carbon emissions, the proximity to environmentally sensitive areas, and locations prone to fire and explosion hazards to select the optimal transportation route using Dijkstra's algorithm. The findings of this research will provide valuable insights for the safe management and sustainable development of gaseous hydrogen tube trailer transport.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.