The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications.

IF 9.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular & Molecular Biology Letters Pub Date : 2024-11-16 DOI:10.1186/s11658-024-00662-x
Hongkun Hu, Jinxin Tang, Hua Wang, Xiaoning Guo, Chao Tu, Zhihong Li
{"title":"The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications.","authors":"Hongkun Hu, Jinxin Tang, Hua Wang, Xiaoning Guo, Chao Tu, Zhihong Li","doi":"10.1186/s11658-024-00662-x","DOIUrl":null,"url":null,"abstract":"<p><p>RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"142"},"PeriodicalIF":9.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00662-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
癌症中的替代剪接与环状 RNA 之间的相互影响:致病因素与治疗意义。
RNA 剪接是基因表达的基本步骤。组成型剪接会无偏差地去除内含子并连接外显子,而替代型剪接(AS)则会选择性地决定外显子和内含子的组合,从而产生对应于同一转录本的 RNA 变体。环状 RNA(circRNA)的生物生成与 AS 密不可分。circRNA的生物生成过程--反向剪接是AS的一种特殊形式。在癌症中,AS 和 circRNA 都偏离了原来的轨道。在本综述中,我们将深入探讨 AS 和 circRNA 在癌症中错综复杂的相互作用。AS和circRNA之间的关系错综复杂,AS调节circRNA的生物生成,而circRNA则反过来调节AS事件。除此之外,表观遗传和转录后修饰也同时调控着AS和circRNAs。在此基础上,我们总结了目前关于剪接因子和其他 RNA 结合蛋白如何调控 circRNA 生物发生,以及 circRNA 如何与剪接因子相互作用影响 AS 事件的知识。具体而言,circRNA 与 AS 事件之间的反馈回路调控在很大程度上促进了肿瘤发生和癌症进展。总之,解决AS和circRNA之间的串扰问题不仅能让人们更好地了解癌症生物学,还能激发新的抗癌策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular & Molecular Biology Letters
Cellular & Molecular Biology Letters 生物-生化与分子生物学
CiteScore
11.60
自引率
13.30%
发文量
101
审稿时长
3 months
期刊介绍: Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.
期刊最新文献
Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Multifunctional acyltransferase HBO1: a key regulatory factor for cellular functions. m6A-modified circCacna1c regulates necroptosis and ischemic myocardial injury by inhibiting Hnrnpf entry into the nucleus. Early and late phases of liver sinusoidal endothelial cell (LSEC) defenestration in mouse model of systemic inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1