{"title":"Safety-Critical Stabilization of Force-Controlled Nonholonomic Mobile Robots","authors":"Tianyu Han;Bo Wang","doi":"10.1109/LCSYS.2024.3492999","DOIUrl":null,"url":null,"abstract":"We present a safety-critical controller for the problem of stabilization for force-controlled nonholonomic mobile robots. The proposed control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems. To address nonholonomicity, we design the nominal controller that guarantees global asymptotic stability and local exponential stability for the closed-loop system in polar coordinates and construct a strict Lyapunov function valid on any compact sets. Furthermore, we present a procedure for constructing CBFs for cascaded systems, utilizing the CBF of the kinematic model through integrator backstepping. Quadratic programming is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop. The proposed control law is time-invariant, continuous along trajectories, and easy to implement. Our main results guarantee both safety and local asymptotic stability for the closed-loop system.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2469-2474"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10745547/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a safety-critical controller for the problem of stabilization for force-controlled nonholonomic mobile robots. The proposed control law is based on the constructions of control Lyapunov functions (CLFs) and control barrier functions (CBFs) for cascaded systems. To address nonholonomicity, we design the nominal controller that guarantees global asymptotic stability and local exponential stability for the closed-loop system in polar coordinates and construct a strict Lyapunov function valid on any compact sets. Furthermore, we present a procedure for constructing CBFs for cascaded systems, utilizing the CBF of the kinematic model through integrator backstepping. Quadratic programming is employed to combine CLFs and CBFs to integrate both stability and safety in the closed loop. The proposed control law is time-invariant, continuous along trajectories, and easy to implement. Our main results guarantee both safety and local asymptotic stability for the closed-loop system.