Lin Jiewei;Gou Xin;Zhu Xiaolong;Liu Zhisheng;Dai Huwei;Liu Xiaolei;Zhang Junhong
{"title":"A Multidepth Step-Training Convolutional Neural Network for Power Machinery Fault Diagnosis Under Variable Loads","authors":"Lin Jiewei;Gou Xin;Zhu Xiaolong;Liu Zhisheng;Dai Huwei;Liu Xiaolei;Zhang Junhong","doi":"10.1109/TIM.2024.3485394","DOIUrl":null,"url":null,"abstract":"Due to the operation conditions of variable loads, it is challenging to achieve high-accuracy fault diagnosis of power machinery. The attention mechanism is widely used in this issue because of its ability to capture domain-invariant features of vibration signals. However, when the problem is specific to thermal engine diagnosis, the attention collapse can be caused by the interaction between load patterns and fault patterns. Consequently, the deep features converge to decrease the network generalization. To address this issue, this research employs the ensemble learning of crowd intelligence strategy, which is opposite to the attention mechanism of elite strategy. A multidepth step-training convolutional neural network (MDNN) is proposed. The multidepth architecture enhances feature diversity, and the step-training feature ensemble incorporates features into decision-making, thus overcoming feature convergence. The MDNN is tested using two datasets: a light-duty rotor-bearing test rig (electromechanical system) and a heavy-duty diesel engine test rig (thermodynamic machinery). According to the results, for the load-varying diesel engine, the attention mechanism exacerbates feature convergence, whereas MDNN effectively mitigates it. Meanwhile, with the mixture of four engine loads, the diagnosis accuracy of the attention mechanism-based network falls sharply to 54.27% from 59.20%, while the MDNN rises to 95.46%. The results offer a promising method for load-varying fault diagnosis of thermodynamic machinery and give a comprehensive understanding of the importance of avoiding feature convergence in the prognostic diagnosis of diesel engines.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-14"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10747842/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the operation conditions of variable loads, it is challenging to achieve high-accuracy fault diagnosis of power machinery. The attention mechanism is widely used in this issue because of its ability to capture domain-invariant features of vibration signals. However, when the problem is specific to thermal engine diagnosis, the attention collapse can be caused by the interaction between load patterns and fault patterns. Consequently, the deep features converge to decrease the network generalization. To address this issue, this research employs the ensemble learning of crowd intelligence strategy, which is opposite to the attention mechanism of elite strategy. A multidepth step-training convolutional neural network (MDNN) is proposed. The multidepth architecture enhances feature diversity, and the step-training feature ensemble incorporates features into decision-making, thus overcoming feature convergence. The MDNN is tested using two datasets: a light-duty rotor-bearing test rig (electromechanical system) and a heavy-duty diesel engine test rig (thermodynamic machinery). According to the results, for the load-varying diesel engine, the attention mechanism exacerbates feature convergence, whereas MDNN effectively mitigates it. Meanwhile, with the mixture of four engine loads, the diagnosis accuracy of the attention mechanism-based network falls sharply to 54.27% from 59.20%, while the MDNN rises to 95.46%. The results offer a promising method for load-varying fault diagnosis of thermodynamic machinery and give a comprehensive understanding of the importance of avoiding feature convergence in the prognostic diagnosis of diesel engines.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.