{"title":"Global Shutter and Charge Binning With Quantum Dots Photodiode Arrays for NIR Imaging","authors":"Loïc Baudoin;Arthur Arnaud;Sébastien Massenot;Pierre Magnan","doi":"10.1109/JEDS.2024.3489672","DOIUrl":null,"url":null,"abstract":"New applications like depth measurements or multispectral imaging require to develop image sensors able to sense efficiently in the Near Infrared and Short-Wave Infrared where silicon is weakly sensitive. Colloidal Quantum Dots (CQD) technology is an interesting candidate to address these new applications as it allows to develop image sensors with high quantum efficiency at excitonic peak and high-resolution images. In this paper, we present an electrical model describing the electrical behavior of a designed and manufactured CQD photodiode. We use this model to explore a different architecture collecting holes instead of electrons. This architecture allows to control the charge collection inside the CQD thin film through the electric field. This property enables to implement global shutter functionality, to bin charges from several photodiodes, or to operate two physically interleaved photodiodes arrays alternatively with different types of pixel circuitries. These operating modes extend the capabilities of CQD image sensors in terms of applications.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"12 ","pages":"1011-1020"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742005/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
New applications like depth measurements or multispectral imaging require to develop image sensors able to sense efficiently in the Near Infrared and Short-Wave Infrared where silicon is weakly sensitive. Colloidal Quantum Dots (CQD) technology is an interesting candidate to address these new applications as it allows to develop image sensors with high quantum efficiency at excitonic peak and high-resolution images. In this paper, we present an electrical model describing the electrical behavior of a designed and manufactured CQD photodiode. We use this model to explore a different architecture collecting holes instead of electrons. This architecture allows to control the charge collection inside the CQD thin film through the electric field. This property enables to implement global shutter functionality, to bin charges from several photodiodes, or to operate two physically interleaved photodiodes arrays alternatively with different types of pixel circuitries. These operating modes extend the capabilities of CQD image sensors in terms of applications.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.