{"title":"RGB-D Vision Navigation via Motion Saliency Measurement and Twin Reprojection Optimization in Complex Dynamic Scenes","authors":"Chao Sun;Xing Wu;Changyin Sun","doi":"10.1109/TIM.2024.3485442","DOIUrl":null,"url":null,"abstract":"Localization in an unexplored environment is a fundamental capability for robotic vision navigation. However, due to the static world assumption, it still suffers the impoverishment of robustness and accuracy in complex dynamic workspaces. Moving objects, with indeterminate motion status in dynamic scenarios, usually increase the difficulty and complexity to the localization of the robotic vehicles. To address this problem, a robust and real-time RGB-D vision navigation system based on motion saliency measurement (MSM) and twin reprojection (TR) optimization is proposed to allow accurate localization for the robotic vehicles under complex dynamic scenes. Firstly, a novel saliency-induced dense motion removal (SDMR) method is developed to detect and eliminate the dynamic regions in RGB-D inputs, which can effectively filter out the outlier data that are associated with the moving objects. Then, a robust matching strategy for edge drawing lines (EDLines) feature is devised to acquire fine line inliers by constructing keypoint correspondence. Furthermore, the TR error is built by depth measurement for the line features. It is incorporated into a new error optimization function to achieve optimal pose estimation. The experimental results demonstrate that the SDMR can accurately detect dynamic objects and eliminate movement regions in complex dynamic scenarios. The proposed navigation system proves to attain at least 26% improvement of localization accuracy over other advanced dynamic navigation solutions. Test code is available on \n<uri>https://github.com/SunIMLab/TL-REE</uri>\n.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-17"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731912/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Localization in an unexplored environment is a fundamental capability for robotic vision navigation. However, due to the static world assumption, it still suffers the impoverishment of robustness and accuracy in complex dynamic workspaces. Moving objects, with indeterminate motion status in dynamic scenarios, usually increase the difficulty and complexity to the localization of the robotic vehicles. To address this problem, a robust and real-time RGB-D vision navigation system based on motion saliency measurement (MSM) and twin reprojection (TR) optimization is proposed to allow accurate localization for the robotic vehicles under complex dynamic scenes. Firstly, a novel saliency-induced dense motion removal (SDMR) method is developed to detect and eliminate the dynamic regions in RGB-D inputs, which can effectively filter out the outlier data that are associated with the moving objects. Then, a robust matching strategy for edge drawing lines (EDLines) feature is devised to acquire fine line inliers by constructing keypoint correspondence. Furthermore, the TR error is built by depth measurement for the line features. It is incorporated into a new error optimization function to achieve optimal pose estimation. The experimental results demonstrate that the SDMR can accurately detect dynamic objects and eliminate movement regions in complex dynamic scenarios. The proposed navigation system proves to attain at least 26% improvement of localization accuracy over other advanced dynamic navigation solutions. Test code is available on
https://github.com/SunIMLab/TL-REE
.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.