Jiafen Song, Wei Guo, Shiming Xu, Ding Hao, Yajie Du, Jiangtao Xiong, Jinglong Li
{"title":"Interfacial Microstructure Evolution and Mechanical Properties of TC4/MgAl2O4 Joints Brazed with Ti–Zr–Cu–Ni Filler Metal","authors":"Jiafen Song, Wei Guo, Shiming Xu, Ding Hao, Yajie Du, Jiangtao Xiong, Jinglong Li","doi":"10.1007/s40195-024-01761-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, Ti–Zr–Cu–Ni amorphous filler metal was used to braze MgAl<sub>2</sub>O<sub>4</sub> ceramic and Ti–6Al–4V (TC4) at 875, 900, 925, 950, 975 and 1000 °C for 10 min. The effects of brazing temperature on interfacial microstructure and mechanical properties of the joints were analyzed. The results showed that typical microstructure of the TC4/MgAl<sub>2</sub>O<sub>4</sub> joint was solid solution (SS) α-Ti, acicular α-Ti + (Ti, Zr)<sub>2</sub>(Ni, Cu) layer, metallic glasses and TiO. With the increase in brazing temperature, (Ti, Zr)<sub>2</sub>(Ni, Cu) layer gradually dispersed at bonding interface, a continuous layer of TiO appears near MgAl<sub>2</sub>O<sub>4</sub> ceramic. With the increase in brazing temperature, the hard and brittle (Ti, Zr)<sub>2</sub>(Ni, Cu) layer gradually dispersed, resulting in the maximum shear strength of 39.5 MPa. The high-resolution TEM revealed the presence of amorphous structure, which is composed of Ti, Zr, Cu, Ni and Al. The values of <i>δ</i> and Δ<i>H</i><sub>mix</sub> are calculated to be about 8% and −39.82 kJ/mol for the amorphous phase.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2057 - 2067"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01761-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, Ti–Zr–Cu–Ni amorphous filler metal was used to braze MgAl2O4 ceramic and Ti–6Al–4V (TC4) at 875, 900, 925, 950, 975 and 1000 °C for 10 min. The effects of brazing temperature on interfacial microstructure and mechanical properties of the joints were analyzed. The results showed that typical microstructure of the TC4/MgAl2O4 joint was solid solution (SS) α-Ti, acicular α-Ti + (Ti, Zr)2(Ni, Cu) layer, metallic glasses and TiO. With the increase in brazing temperature, (Ti, Zr)2(Ni, Cu) layer gradually dispersed at bonding interface, a continuous layer of TiO appears near MgAl2O4 ceramic. With the increase in brazing temperature, the hard and brittle (Ti, Zr)2(Ni, Cu) layer gradually dispersed, resulting in the maximum shear strength of 39.5 MPa. The high-resolution TEM revealed the presence of amorphous structure, which is composed of Ti, Zr, Cu, Ni and Al. The values of δ and ΔHmix are calculated to be about 8% and −39.82 kJ/mol for the amorphous phase.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.