{"title":"On the semi-infinite distributed resistor-constant phase element transmission line","authors":"Anis Allagui, Enrique H. Balaguera","doi":"10.1016/j.electacta.2024.145344","DOIUrl":null,"url":null,"abstract":"Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Z</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">s</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msup><mo is=\"true\">)</mo></mrow></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Z</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">s</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msup><mo is=\"true\">)</mo></mrow></mrow></math></script></span>, where <span><span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">></mo><mn is=\"true\">0</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">α</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">></mo><mn is=\"true\">0</mn></mrow></math></script></span> and <span><span><math><mrow is=\"true\"><mn is=\"true\">0</mn><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\"><</mo><mi is=\"true\">α</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">⩽</mo><mn is=\"true\">1</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">0</mn><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\"><</mo><mi is=\"true\">α</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">⩽</mo><mn is=\"true\">1</mn></mrow></math></script></span>, and offers an extra degree of freedom compared to the ideal capacitor of impedance <span><span><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">C</mi><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">1</mn><mo is=\"true\">/</mo><mrow is=\"true\"><mo is=\"true\">(</mo><mi is=\"true\">C</mi><mi is=\"true\">s</mi><mo is=\"true\">)</mo></mrow></mrow></math></script></span>. This leads to an anomalous time-fractional diffusion equation that we solve considering the Caputo fractional derivative definition for the case of one-dimensional, semi-infinite propagation under a constant voltage excitation at <span><span><math><mrow is=\"true\"><mi is=\"true\">x</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mo><mn is=\"true\">0</mn></mrow></math></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">x</mi><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">=</mo><mn is=\"true\">0</mn></mrow></math></script></span>. The voltage and current responses are found analytically in terms of the Fox’s <span><span><math><mi is=\"true\">H</mi></math></span><script type=\"math/mml\"><math><mi is=\"true\">H</mi></math></script></span>-function. We discuss the implications of the dispersive nature of the CPE on the time-domain response along the transmission line system, as well as on the frequency-domain input impedance.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"8 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145344","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Under a particular geometrical arrangements of impedances of the type resistors and capacitors for the modeling of a transmission line, the voltage and current along the line are known to follow the standard partial differential equation of diffusion. In this work we propose a generalization of this circuit network by considering the non-ideal fractional capacitive element, also known as constant phase element (CPE), as the energy storage component. The CPE’s impedance is given by , where and , and offers an extra degree of freedom compared to the ideal capacitor of impedance . This leads to an anomalous time-fractional diffusion equation that we solve considering the Caputo fractional derivative definition for the case of one-dimensional, semi-infinite propagation under a constant voltage excitation at . The voltage and current responses are found analytically in terms of the Fox’s -function. We discuss the implications of the dispersive nature of the CPE on the time-domain response along the transmission line system, as well as on the frequency-domain input impedance.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.