{"title":"Arylether-type polybenzimidazole-based composites containing imidazole-substituted heteropolyacid salts for high-temperature proton exchange membrane fuel cells","authors":"Jiayu Yang, Chengying Shi, Jingwei Li, Tianyang Li, Hui Zhang, Qingxin Chen, Peng Wang, Wei Hu, Baijun Liu","doi":"10.1016/j.electacta.2024.145368","DOIUrl":null,"url":null,"abstract":"Phosphoric acid-doped polybenzimidazole (PA-PBI) membranes are one of the most promising candidates for practical applications in high temperature proton exchange membrane fuel cells. In the field of the proton exchange membranes, a key target is to develop the membranes possessing high proton conducting ability, and meanwhile maintaining good mechanical integrity. It is extremely hard for PBI-based membranes at a high acid doping level (ADL) to have good strength due to the strong “plasticization effect” caused by PA molecules to PBI backbones. In order to obtain high-proton-conductivity membranes with a good comprehensive performance, three imidazole-substituted heteropolyacid salts (imi-HPAs) were synthesized and then incorporated into an arylether-type polybenzimidazole (Ph-PBI) matrix to fabricate some composite membranes via a solution blending process. Since both Ph-PBI matrix and imidazole-substituted heteropolyacid salts contained the functional imidazole groups, some preferred mixed effects and performance enhancements of the organic-inorganic composite membranes were observed. The morphology of the composite membranes revealed that imidazole-substituted heteropolyacid salts were homogenously dispersed in the Ph-PBI matrix. The membrane Ph-PBI/imi-HPA-3-15% at ADL∼290.4% had the highest conductivity of 166.6 mS·cm<sup>-1</sup> at 200 °C. A H<sub>2</sub>/O<sub>2</sub> fuel cell based on one membrane showed a peak power density of 454 mW·cm<sup>-2</sup> at 160 °C, without humidification.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"46 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2024.145368","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphoric acid-doped polybenzimidazole (PA-PBI) membranes are one of the most promising candidates for practical applications in high temperature proton exchange membrane fuel cells. In the field of the proton exchange membranes, a key target is to develop the membranes possessing high proton conducting ability, and meanwhile maintaining good mechanical integrity. It is extremely hard for PBI-based membranes at a high acid doping level (ADL) to have good strength due to the strong “plasticization effect” caused by PA molecules to PBI backbones. In order to obtain high-proton-conductivity membranes with a good comprehensive performance, three imidazole-substituted heteropolyacid salts (imi-HPAs) were synthesized and then incorporated into an arylether-type polybenzimidazole (Ph-PBI) matrix to fabricate some composite membranes via a solution blending process. Since both Ph-PBI matrix and imidazole-substituted heteropolyacid salts contained the functional imidazole groups, some preferred mixed effects and performance enhancements of the organic-inorganic composite membranes were observed. The morphology of the composite membranes revealed that imidazole-substituted heteropolyacid salts were homogenously dispersed in the Ph-PBI matrix. The membrane Ph-PBI/imi-HPA-3-15% at ADL∼290.4% had the highest conductivity of 166.6 mS·cm-1 at 200 °C. A H2/O2 fuel cell based on one membrane showed a peak power density of 454 mW·cm-2 at 160 °C, without humidification.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.