Assessing road construction effects on turbidity in adjacent water bodies using Sentinel-1 and Sentinel-2.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-20 Epub Date: 2024-11-29 DOI:10.1016/j.scitotenv.2024.177554
Mehrdad Ghorbani Mooselu, Mohammad Reza Nikoo, Helge Liltved, Marianne Simonsen Bjørkenes, Abdelrazek Elnashar, Shahab Aldin Shojaeezadeh, Tobias Karl David Weber
{"title":"Assessing road construction effects on turbidity in adjacent water bodies using Sentinel-1 and Sentinel-2.","authors":"Mehrdad Ghorbani Mooselu, Mohammad Reza Nikoo, Helge Liltved, Marianne Simonsen Bjørkenes, Abdelrazek Elnashar, Shahab Aldin Shojaeezadeh, Tobias Karl David Weber","doi":"10.1016/j.scitotenv.2024.177554","DOIUrl":null,"url":null,"abstract":"<p><p>Road construction significantly affects water resources by introducing contaminants, fragmenting habitats, and degrading water quality. This study examines the use of Remote Sensing (RS) data of Sentinel-1 (S1) and Senitnel-2 (S2) in Google Earth Engine (GEE) to do spatio-temporal analysis of turbidity in adjacent water bodies during the construction and operation of the E18 Arendal-Tvedestrand highway in southeastern Norway from 2017 to 2021. S1 radiometric data helped delineate water extents, while S2-Top of Atmosphere (TOA) multispectral data, corrected using the Modified Atmospheric correction for INland waters (MAIN), used to estimate turbidity levels. To ensure a comprehensive time series of RS data, we utilized S2-TOA data corrected with the MAIN algorithm rather than S2-Bottom Of Atmosphere (BOA) data. We validated the MAIN algorithm's accuracy against GLORIA (Global Observatory of Lake Responses to Interventions and Drivers) observations of surface water reflectance in lakes, globally. Subsequently, the corrected S2 data is used to calculate turbidity using the Novoa and Nechad retrieval algorithms and compared with GLORIA turbidity observations. Findings indicate that the MAIN algorithm adequately estimates water-leaving surface reflectance (Pearson correlation > 0.7 for wavelengths between 490 and 705 nm) and turbidity (Pearson correlation > 0.6 for both algorithms), determining Nechad as the more effective algorithm. In this regard, we used S2 corrected images with MIAN to estimate turbidity in the study area and evaluated with local gauge data and observational reports. Results indicate that the proposed framework effectively captures trends and patterns of turbidity variation in the study area. Findings verify that road construction can increase turbidity in adjacent water bodies and emphasis the employing RS data in cloud platforms like GEE can provide insights for effective long-term water quality management strategies during construction and operation phases.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177554"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177554","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Road construction significantly affects water resources by introducing contaminants, fragmenting habitats, and degrading water quality. This study examines the use of Remote Sensing (RS) data of Sentinel-1 (S1) and Senitnel-2 (S2) in Google Earth Engine (GEE) to do spatio-temporal analysis of turbidity in adjacent water bodies during the construction and operation of the E18 Arendal-Tvedestrand highway in southeastern Norway from 2017 to 2021. S1 radiometric data helped delineate water extents, while S2-Top of Atmosphere (TOA) multispectral data, corrected using the Modified Atmospheric correction for INland waters (MAIN), used to estimate turbidity levels. To ensure a comprehensive time series of RS data, we utilized S2-TOA data corrected with the MAIN algorithm rather than S2-Bottom Of Atmosphere (BOA) data. We validated the MAIN algorithm's accuracy against GLORIA (Global Observatory of Lake Responses to Interventions and Drivers) observations of surface water reflectance in lakes, globally. Subsequently, the corrected S2 data is used to calculate turbidity using the Novoa and Nechad retrieval algorithms and compared with GLORIA turbidity observations. Findings indicate that the MAIN algorithm adequately estimates water-leaving surface reflectance (Pearson correlation > 0.7 for wavelengths between 490 and 705 nm) and turbidity (Pearson correlation > 0.6 for both algorithms), determining Nechad as the more effective algorithm. In this regard, we used S2 corrected images with MIAN to estimate turbidity in the study area and evaluated with local gauge data and observational reports. Results indicate that the proposed framework effectively captures trends and patterns of turbidity variation in the study area. Findings verify that road construction can increase turbidity in adjacent water bodies and emphasis the employing RS data in cloud platforms like GEE can provide insights for effective long-term water quality management strategies during construction and operation phases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Sentinel-1 和 Sentinel-2 评估道路施工对邻近水体浊度的影响。
道路建设会引入污染物、破坏栖息地并降低水质,从而对水资源产生重大影响。本研究利用谷歌地球引擎(GEE)中的 Sentinel-1(S1)和 Senitnel-2(S2)遥感(RS)数据,对挪威东南部 E18 阿伦达尔-Tvedestrand 高速公路在 2017 年至 2021 年施工和运营期间邻近水体的浊度进行了时空分析。S1 辐射测量数据有助于划定水域范围,而使用内陆水域修正大气校正法(MAIN)校正的 S2 大气顶部(TOA)多光谱数据则用于估算浊度水平。为确保 RS 数据时间序列的全面性,我们使用了经 MAIN 算法校正的 S2-TOA 数据,而非 S2-Bottom Of Atmosphere (BOA) 数据。我们根据 GLORIA(全球湖泊对干预和驱动因素的响应观测站)对全球湖泊表层水反射率的观测结果,验证了 MAIN 算法的准确性。随后,校正后的 S2 数据被用于使用 Novoa 和 Nechad 检索算法计算浊度,并与 GLORIA 浊度观测数据进行比较。研究结果表明,MAIN 算法能充分估计离水面反射率(波长在 490 和 705 nm 之间的皮尔逊相关性大于 0.7)和浊度(两种算法的皮尔逊相关性均大于 0.6),而 Nechad 算法更为有效。为此,我们使用 MIAN 的 S2 校正图像来估算研究区域的浊度,并结合当地的测量数据和观测报告进行了评估。结果表明,建议的框架能有效捕捉研究区域的浊度变化趋势和模式。研究结果验证了道路建设会增加邻近水体的浊度,并强调在 GEE 等云平台中使用 RS 数据可在施工和运营阶段为有效的长期水质管理策略提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Quantification and source apportionment of atmospheric oxidation capacity in urban atmosphere by considering reactive chlorine species and photochemical loss of VOCs. Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma. Harmful algal bloom prediction using empirical dynamic modeling. Insecticide application prevents honey bees from realizing benefits of native forage in an agricultural landscape. Evaluating spatial effect of transportation planning factors on taxi CO2 emissions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1