Tongtong Lu, Pawjai Khampang, Ahmed Beydoun, Anna Berezovsky, Rebecca Rohde, Wenzhou Hong, Joseph E Kerschner, Bing Yu
{"title":"Realtime and noninvasive assessment of endotracheal tube displacement using near-infrared and visible cameras.","authors":"Tongtong Lu, Pawjai Khampang, Ahmed Beydoun, Anna Berezovsky, Rebecca Rohde, Wenzhou Hong, Joseph E Kerschner, Bing Yu","doi":"10.1364/BOE.531815","DOIUrl":null,"url":null,"abstract":"<p><p>Endotracheal tube (ETT) intubation is a medical procedure routinely used for achieving mechanical ventilation in critically ill patients. Appropriate ETT placement is crucial as undetected tube migration may cause multiple complications or even fatalities. Therefore, prompt detection of unplanned movement of the ETT and immediate action to restore proper placement are essential to ensure patient safety. Despite this necessity, there is not a widely adopted tool for real-time assessment of ETT displacement. We have developed a device, a dual-camera endotracheal tube or DC-ETT, to address this unmet clinical need. This device uses a near-infrared (NIR) LED and a side-firing optical fiber embedded in the side of an ETT to light up the tracheal tissue and a visible and NIR camera module for the displacement detection. The NIR camera tracks the movement of the NIR pattern on the skin, while the visible camera is used to correct the body movements. The efficacy of the DC-ETT was assessed in two piglets with a linear displacement sensor as reference. A mean discrepancy of less than 0.5 mm between the DC-ETT and reference sensor was observed within a displacement range of ±15 mm. The results suggest that the DC-ETT can potentially provide a simple and cost-effective solution for real-time monitoring of ETT displacements in operating rooms, intensive care units, and emergency departments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6355-6369"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.531815","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Endotracheal tube (ETT) intubation is a medical procedure routinely used for achieving mechanical ventilation in critically ill patients. Appropriate ETT placement is crucial as undetected tube migration may cause multiple complications or even fatalities. Therefore, prompt detection of unplanned movement of the ETT and immediate action to restore proper placement are essential to ensure patient safety. Despite this necessity, there is not a widely adopted tool for real-time assessment of ETT displacement. We have developed a device, a dual-camera endotracheal tube or DC-ETT, to address this unmet clinical need. This device uses a near-infrared (NIR) LED and a side-firing optical fiber embedded in the side of an ETT to light up the tracheal tissue and a visible and NIR camera module for the displacement detection. The NIR camera tracks the movement of the NIR pattern on the skin, while the visible camera is used to correct the body movements. The efficacy of the DC-ETT was assessed in two piglets with a linear displacement sensor as reference. A mean discrepancy of less than 0.5 mm between the DC-ETT and reference sensor was observed within a displacement range of ±15 mm. The results suggest that the DC-ETT can potentially provide a simple and cost-effective solution for real-time monitoring of ETT displacements in operating rooms, intensive care units, and emergency departments.
气管内插管(ETT)是重症患者实现机械通气的常规医疗程序。适当的 ETT 置放至关重要,因为未被发现的插管移位可能会导致多种并发症甚至死亡。因此,及时发现 ETT 的意外移动并立即采取措施恢复正确的置管对确保患者安全至关重要。尽管有此必要,但目前还没有一种被广泛采用的实时评估 ETT 位移的工具。我们开发了一种设备--双摄像头气管插管或 DC-ETT,以满足这一尚未满足的临床需求。该设备使用嵌入 ETT 侧面的近红外 LED 和侧射光纤来照亮气管组织,并使用可见光和近红外相机模块来检测位移。近红外相机跟踪皮肤上近红外图案的移动,而可见光相机则用于校正身体移动。以线性位移传感器为参考,在两头小猪身上评估了 DC-ETT 的功效。在 ±15 毫米的位移范围内,DC-ETT 和参考传感器之间的平均差异小于 0.5 毫米。结果表明,DC-ETT 有可能为手术室、重症监护室和急诊科实时监测 ETT 位移提供简单而经济的解决方案。
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.