Review of ultrasonic vibration-assisted milling technology

Ang Li , Xuewei Zhang , Jianbo Chen , Ting Shi , Lu Wen , Tianbiao Yu
{"title":"Review of ultrasonic vibration-assisted milling technology","authors":"Ang Li ,&nbsp;Xuewei Zhang ,&nbsp;Jianbo Chen ,&nbsp;Ting Shi ,&nbsp;Lu Wen ,&nbsp;Tianbiao Yu","doi":"10.1016/j.precisioneng.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><div>Compared with the conventional milling technology, the ultrasonic vibration-assisted milling technology has better machining performance for hard-to-machine materials. With the progress of ultrasonic generators and ultrasonic transducers, the research of the ultrasonic-assisted milling technology has been developed rapidly. Correspondingly, new design requirements and theoretical concepts are proposed to meet the high-performance requirements of manufacturing complex structures with hard-to-machine materials. There are few comprehensive reviews about the ultrasonic vibration-assisted milling technology. Therefore, we present the first comprehensive review of the advantages, the basic principles, the historical research progress, the cutting tools, the workpiece material properties and the cutting characteristics of the ultrasonic vibration-assisted milling technology to lay a foundation for the related research. In addition, the shortcomings of the existing theories and the outlook for future research directions are also discussed.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 601-616"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with the conventional milling technology, the ultrasonic vibration-assisted milling technology has better machining performance for hard-to-machine materials. With the progress of ultrasonic generators and ultrasonic transducers, the research of the ultrasonic-assisted milling technology has been developed rapidly. Correspondingly, new design requirements and theoretical concepts are proposed to meet the high-performance requirements of manufacturing complex structures with hard-to-machine materials. There are few comprehensive reviews about the ultrasonic vibration-assisted milling technology. Therefore, we present the first comprehensive review of the advantages, the basic principles, the historical research progress, the cutting tools, the workpiece material properties and the cutting characteristics of the ultrasonic vibration-assisted milling technology to lay a foundation for the related research. In addition, the shortcomings of the existing theories and the outlook for future research directions are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声波振动辅助铣削技术回顾
与传统铣削技术相比,超声波振动辅助铣削技术对难加工材料具有更好的加工性能。随着超声波发生器和超声波换能器的进步,超声波辅助铣削技术的研究得到了快速发展。相应地,也提出了新的设计要求和理论概念,以满足难加工材料复杂结构的高性能加工要求。有关超声振动辅助铣削技术的全面综述很少。因此,我们首次对超声波振动辅助铣削技术的优点、基本原理、历史研究进展、切削工具、工件材料特性和切削特性进行了全面综述,为相关研究奠定基础。此外,还讨论了现有理论的不足之处以及对未来研究方向的展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
期刊最新文献
Based on domain adversarial neural network with multiple loss collaborative optimization for milling tool wear state monitoring under different machining conditions Fabrication of angle-gradient echelle grating on metallic glass using shaped vibration cutting with time-varying trajectory Kinematics modeling and trajectory optimization for precision grinding of variable-parameter helical grooves Review of ultrasonic vibration-assisted milling technology An integrated hot embossing and thermal reflow method for precision manufacture of plano-convex glass microlens arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1