Mimicking characteristics of cast iron for enhanced electrocatalytic dehydrogenation of methane

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-11-12 DOI:10.1016/j.fuel.2024.133674
Tushar Singh Verma , R. Nandini Devi , Sailaja Krishnamurty
{"title":"Mimicking characteristics of cast iron for enhanced electrocatalytic dehydrogenation of methane","authors":"Tushar Singh Verma ,&nbsp;R. Nandini Devi ,&nbsp;Sailaja Krishnamurty","doi":"10.1016/j.fuel.2024.133674","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the efficiency of methane dehydrogenation through chemical modification<!--> <!-->of electrocatalytic iron<!--> <!-->surfaces with impurities that resemble cast iron properties is demonstrated computationally using<!--> <!-->Density Functional Theory methodologies. Investigating methane dehydrogenation on thermally stable Fe surfaces with discrete planes and anchoring impurities such as Al, C, and Si minimized reduction barriers. Electrochemical treatment of methane on these robust surfaces yields clean hydrogen and carbon-based compounds, such as carbon nanomaterials and carbon black. As for the most efficient active sites for enhanced methane dehydrogenation, the active plane 100 with 5.5 % C impurities and 0.51 eV reduction barrier is determined to be the most dependable, followed by the active plane 110 with 5.5 % Si impurities and the lower 0.98 eV reduction barrier. Utilizing CI-NEB (Nudged Elastic Band), the dissociation barrier investigation established the electrolytic catalysts’ performance. This work paves the way for experimentalists and demonstrates the economic viability of Fe-based catalysts for the Catalytic Dehydrogenation of Methane.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133674"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028230","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the efficiency of methane dehydrogenation through chemical modification of electrocatalytic iron surfaces with impurities that resemble cast iron properties is demonstrated computationally using Density Functional Theory methodologies. Investigating methane dehydrogenation on thermally stable Fe surfaces with discrete planes and anchoring impurities such as Al, C, and Si minimized reduction barriers. Electrochemical treatment of methane on these robust surfaces yields clean hydrogen and carbon-based compounds, such as carbon nanomaterials and carbon black. As for the most efficient active sites for enhanced methane dehydrogenation, the active plane 100 with 5.5 % C impurities and 0.51 eV reduction barrier is determined to be the most dependable, followed by the active plane 110 with 5.5 % Si impurities and the lower 0.98 eV reduction barrier. Utilizing CI-NEB (Nudged Elastic Band), the dissociation barrier investigation established the electrolytic catalysts’ performance. This work paves the way for experimentalists and demonstrates the economic viability of Fe-based catalysts for the Catalytic Dehydrogenation of Methane.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟铸铁特性以增强甲烷的电催化脱氢作用
利用密度泛函理论方法,通过对具有类似铸铁特性的杂质的电催化铁表面进行化学修饰,提高了甲烷脱氢的效率。研究甲烷在具有离散平面和锚定杂质(如 Al、C 和 Si)的热稳定铁表面上的脱氢过程,最大限度地降低了还原障碍。在这些坚固的表面上对甲烷进行电化学处理,可产生清洁的氢气和碳基化合物,如碳纳米材料和炭黑。关于增强甲烷脱氢的最有效活性位点,含 5.5% C 杂质和 0.51 eV 还原势垒的活性平面 100 被认为是最可靠的,其次是含 5.5% Si 杂质和较低 0.98 eV 还原势垒的活性平面 110。利用 CI-NEB(裸弹带)进行的解离势垒研究确定了电解催化剂的性能。这项工作为实验人员铺平了道路,并证明了将铁基催化剂用于甲烷催化脱氢的经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Aluminum combustion enhancement in AP free nitramine- based solid propellants by PVDF coating Editorial Board Highly efficient sulfamic acid inhibitor enhanced coal spontaneous combustion prevention through acid corrosion and hydrolysis Investigation on reaction kinetics and thermodynamic performances of methanol steam reforming hydrogen production directly driven by solar radiation New insights into understanding the effect of water content on proton exchange membrane fuel cell output power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1