Rana Muhammad Adnan , Behrooz Keshtegar , Mona Abusurrah , Ozgur Kisi , Abdulaziz S. Alkabaa
{"title":"Enhancing solar radiation prediction accuracy: A hybrid machine learning approach integrating response surface method and support vector regression","authors":"Rana Muhammad Adnan , Behrooz Keshtegar , Mona Abusurrah , Ozgur Kisi , Abdulaziz S. Alkabaa","doi":"10.1016/j.asej.2024.103034","DOIUrl":null,"url":null,"abstract":"<div><div>An accurate solar radiation (SR) prediction with a practical training approach is vital in estimating solar energy. A hybrid machine learning (ML) model is proposed for estimating the monthly SR. The proposed model includes two ML approaches: the response surface method (RSM) and support vector regression (SVR). The RSM is used to optimize the input variables and handle the data points for the prediction of SR. The first ML approach presents two input variables to estimate data handling. In the second ML process, the SVR model provides a nonlinear regression for handling data supplied by RSM. A new model was employed to predict the SR data taken from two stations in Turkey, as the temperature and extraterrestrial radiation were used as the model inputs. The RSM, artificial neural networks (ANNs), SVR, multivariate adaptive regression spline (MARS), M5 model tree (M5Tree) and convolutional neural networks (CNN) methods as existing ML approaches were employed to compare the predictions proposed hybrid ML approaches using several criteria. Data were split into training and testing sets, and two scenarios were established to compare models’ efficiencies according to different sets. The outcomes showed that the proposed model provides better accuracy for estimating SR using limited input data than other alternatives. The accuracy of the ANNs, SVR, MARS, M5Tree, RSM and CNN models was improved using a hybrid ML model. The proposed RSM-SVR method enhanced the efficiency of the ANN, SVR, MARS, M5Tree, and RSM methods by RMSE margins ranging from 0.1% to 5.6%, 2.8% to 7.3%, 1.0% to 8.3%, 0.1% to 28%, and 2.0% to 5.9%, respectively.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 11","pages":"Article 103034"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209044792400409X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An accurate solar radiation (SR) prediction with a practical training approach is vital in estimating solar energy. A hybrid machine learning (ML) model is proposed for estimating the monthly SR. The proposed model includes two ML approaches: the response surface method (RSM) and support vector regression (SVR). The RSM is used to optimize the input variables and handle the data points for the prediction of SR. The first ML approach presents two input variables to estimate data handling. In the second ML process, the SVR model provides a nonlinear regression for handling data supplied by RSM. A new model was employed to predict the SR data taken from two stations in Turkey, as the temperature and extraterrestrial radiation were used as the model inputs. The RSM, artificial neural networks (ANNs), SVR, multivariate adaptive regression spline (MARS), M5 model tree (M5Tree) and convolutional neural networks (CNN) methods as existing ML approaches were employed to compare the predictions proposed hybrid ML approaches using several criteria. Data were split into training and testing sets, and two scenarios were established to compare models’ efficiencies according to different sets. The outcomes showed that the proposed model provides better accuracy for estimating SR using limited input data than other alternatives. The accuracy of the ANNs, SVR, MARS, M5Tree, RSM and CNN models was improved using a hybrid ML model. The proposed RSM-SVR method enhanced the efficiency of the ANN, SVR, MARS, M5Tree, and RSM methods by RMSE margins ranging from 0.1% to 5.6%, 2.8% to 7.3%, 1.0% to 8.3%, 0.1% to 28%, and 2.0% to 5.9%, respectively.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.