Efficient separation of methyl ethyl ketone and water azeotrope using hydrophobic amino acid ester ionic liquids

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-11-07 DOI:10.1016/j.jtice.2024.105822
Jun Gao , Zhaohua Cheng , Lianzheng Zhang , Dongmei Xu , Yixin Ma , Yinglong Wang
{"title":"Efficient separation of methyl ethyl ketone and water azeotrope using hydrophobic amino acid ester ionic liquids","authors":"Jun Gao ,&nbsp;Zhaohua Cheng ,&nbsp;Lianzheng Zhang ,&nbsp;Dongmei Xu ,&nbsp;Yixin Ma ,&nbsp;Yinglong Wang","doi":"10.1016/j.jtice.2024.105822","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Methyl ethyl ketone (MEK), an essential organic solvent, is commonly produced via the n-butene method, where water emerges as the principal impurity. The conventional distillation processes, which are necessitated by the azeotropic behavior between MEK and water, result in a substantial expenditure of energy. As a result, liquid-liquid extraction represents a promising alternative for energy-efficient separation.</div></div><div><h3>Methods</h3><div>In this work, three hydrophobic amino acid ester ionic liquids L-phenylalanine ethyl ester bis(trifluoromethylsulfonyl) imide ([Phe][NTf<sub>2</sub>]), L-leucine ethyl ester bis(trifluoromethylsulfonyl) imide ([Leu][NTf<sub>2</sub>]) and L-valine ethyl ester bis(trifluoromethylsulfonyl) imide ([Val][NTf<sub>2</sub>]) were utilized as extractants for separation of the binary azeotrope methyl ethyl ketone and water. The effects of extraction time, extraction temperature, mass ratio of MEK-water mixture to ionic liquid and initial concentration of MEK on extraction efficiency were investigated.</div></div><div><h3>Significant findings</h3><div>The results demonstrate that the ionic liquid [Phe][NTf<sub>2</sub>] exhibits superior extraction ability for the separation of the azeotrope methyl ethyl ketone and water. The maximum extraction yield of 99.86 % was achieved with the optimum extraction conditions of extraction time, 10 min, extraction temperature, 293.15 K, mass ratio of mixture to ionic liquid, 1:1 and initial concentration of MEK, 20 %. In addition, the relationship between the structure of ionic liquids and their extraction performance was revealed by quantum chemical calculations of ionic liquids with MEK and water. These ionic liquids were positioned as promising environmentally friendly alternatives to traditional organic solvents for the recovery of MEK from aqueous solutions, providing valuable insights for industrial applications.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105822"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Methyl ethyl ketone (MEK), an essential organic solvent, is commonly produced via the n-butene method, where water emerges as the principal impurity. The conventional distillation processes, which are necessitated by the azeotropic behavior between MEK and water, result in a substantial expenditure of energy. As a result, liquid-liquid extraction represents a promising alternative for energy-efficient separation.

Methods

In this work, three hydrophobic amino acid ester ionic liquids L-phenylalanine ethyl ester bis(trifluoromethylsulfonyl) imide ([Phe][NTf2]), L-leucine ethyl ester bis(trifluoromethylsulfonyl) imide ([Leu][NTf2]) and L-valine ethyl ester bis(trifluoromethylsulfonyl) imide ([Val][NTf2]) were utilized as extractants for separation of the binary azeotrope methyl ethyl ketone and water. The effects of extraction time, extraction temperature, mass ratio of MEK-water mixture to ionic liquid and initial concentration of MEK on extraction efficiency were investigated.

Significant findings

The results demonstrate that the ionic liquid [Phe][NTf2] exhibits superior extraction ability for the separation of the azeotrope methyl ethyl ketone and water. The maximum extraction yield of 99.86 % was achieved with the optimum extraction conditions of extraction time, 10 min, extraction temperature, 293.15 K, mass ratio of mixture to ionic liquid, 1:1 and initial concentration of MEK, 20 %. In addition, the relationship between the structure of ionic liquids and their extraction performance was revealed by quantum chemical calculations of ionic liquids with MEK and water. These ionic liquids were positioned as promising environmentally friendly alternatives to traditional organic solvents for the recovery of MEK from aqueous solutions, providing valuable insights for industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用疏水性氨基酸酯离子液体高效分离甲乙酮和水共沸物
背景甲基乙基酮(MEK)是一种重要的有机溶剂,通常通过正丁烯法生产,其中水是主要的杂质。由于 MEK 与水之间的共沸行为,传统的蒸馏过程需要消耗大量能源。因此,液-液萃取是一种很有前景的节能分离替代方法。方法在这项工作中,三种疏水性氨基酸酯离子液体 L-苯丙氨酸乙酯双(三氟甲基磺酰基)亚胺([Phe][NTf2])、L-亮氨酸乙酯双(三氟甲基磺酰基)亚胺([Leu][NTf2])和L-缬氨酸乙酯双(三氟甲基磺酰基)亚胺([Val][NTf2])作为萃取剂,用于分离二元共沸物甲乙酮和水。结果表明,离子液体[Phe][NTf2]在共沸物甲乙酮和水的分离中表现出优异的萃取能力。在萃取时间为 10 分钟、萃取温度为 293.15 K、混合物与离子液体的质量比为 1:1、MEK 初始浓度为 20% 的最佳萃取条件下,萃取率最高,达到 99.86%。此外,离子液体与 MEK 和水的量子化学计算揭示了离子液体结构与其萃取性能之间的关系。这些离子液体被定位为从水溶液中回收 MEK 的传统有机溶剂的环保型替代品,为工业应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Cellulose nanocrystals/zeolitic imidazolate framework-L (CNCs/ZIF-L) composites for loading and diffusion-controlled release of doxorubicin hydrochloride Optimization and sensitivity analysis of magnetic fields on nanofluid flow on a wedge with machine learning techniques with joule heating, radiation and viscous dissipation Biochar from residues of anaerobic digestion and its application as electrocatalyst in Zn–air batteries Decoration of mesoporous hydroxyapatite nanorods by CdSe and PtO nanoparticles for enhanced photocatalytic oxidation of antibiotic pollutant in water Fabrication of tannic acid-(3-amino)propyltriethoxysilane with zwitterionic carbon quantum dots coating on cellulose acetate tubular membrane for oil-water emulsion separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1