Fabrication of hydrothermal PPKTP and its spontaneous parametric down-conversion characteristics

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2024-10-22 DOI:10.1016/j.jcrysgro.2024.127968
X.D. Song , X.L. He , H.Y. Song , W.D. Zhao , J.F. Tong , W.Y. Wu , H.T. Zhou , J.L. Wang , Y.B. Zuo , C.L. Zhang
{"title":"Fabrication of hydrothermal PPKTP and its spontaneous parametric down-conversion characteristics","authors":"X.D. Song ,&nbsp;X.L. He ,&nbsp;H.Y. Song ,&nbsp;W.D. Zhao ,&nbsp;J.F. Tong ,&nbsp;W.Y. Wu ,&nbsp;H.T. Zhou ,&nbsp;J.L. Wang ,&nbsp;Y.B. Zuo ,&nbsp;C.L. Zhang","doi":"10.1016/j.jcrysgro.2024.127968","DOIUrl":null,"url":null,"abstract":"<div><div>High-voltage electric field polarization, selective corrosion, current monitoring, and other methods are used to develop hydrothermal PPKTP. It is found that the reversal domain nucleation of hydrothermal-grown KTP crystals has four kinds of microscopic morphology, namely, strip shape, spindle shape, bullet shape and irregular shape, in the process of high voltage electric field polarization. Compared with the leakage current in the process of polarization of flux-grown KTP crystals, the hydrothermal-grown KTP crystals only exist when the applied electric field is much larger than the coercive field. The leakage current can be suppressed by multiple loading of short pulses, and the PPKTP with a poled period of 10 μm and 46 μm were fabricated, respectively. Subsequently, based on the fabricated PPKTP, the SPDC characteristics are studied. To the PPKTP with a poled period of 10 μm, the quantum entanglement source whose brightness exceeds 2.1 kHz @ 810 nm is prepared by the SPDC technique. Otherwise, the PPKTP with a poled period of 46 μm is used for SPDC, and the brightness of entangled photon pairs in channel 1 and channel 2 are 3.21 kHz @ 1560 nm and 5.31 kHz @ 1560 nm, respectively.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127968"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004068","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage electric field polarization, selective corrosion, current monitoring, and other methods are used to develop hydrothermal PPKTP. It is found that the reversal domain nucleation of hydrothermal-grown KTP crystals has four kinds of microscopic morphology, namely, strip shape, spindle shape, bullet shape and irregular shape, in the process of high voltage electric field polarization. Compared with the leakage current in the process of polarization of flux-grown KTP crystals, the hydrothermal-grown KTP crystals only exist when the applied electric field is much larger than the coercive field. The leakage current can be suppressed by multiple loading of short pulses, and the PPKTP with a poled period of 10 μm and 46 μm were fabricated, respectively. Subsequently, based on the fabricated PPKTP, the SPDC characteristics are studied. To the PPKTP with a poled period of 10 μm, the quantum entanglement source whose brightness exceeds 2.1 kHz @ 810 nm is prepared by the SPDC technique. Otherwise, the PPKTP with a poled period of 46 μm is used for SPDC, and the brightness of entangled photon pairs in channel 1 and channel 2 are 3.21 kHz @ 1560 nm and 5.31 kHz @ 1560 nm, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水热法 PPKTP 制备及其自发参数下转换特性
采用高压电场极化、选择性腐蚀、电流监测等方法研制水热法PPKTP。研究发现,在高压电场极化过程中,水热法生长的 KTP 晶体的反转域成核具有四种微观形态,即条状、纺锤状、子弹状和不规则状。与通量生长的 KTP 晶体极化过程中的漏电流相比,水热生长的 KTP 晶体只有在外加电场远大于矫顽力场时才存在漏电流。通过多次加载短脉冲可以抑制漏电流,并分别制备出了极化周期为 10 μm 和 46 μm 的 PPKTP。随后,以制作的 PPKTP 为基础,对 SPDC 特性进行了研究。对于极化周期为 10 μm 的 PPKTP,利用 SPDC 技术制备了亮度超过 2.1 kHz @ 810 nm 的量子纠缠源。否则,使用极化周期为 46 μm 的 PPKTP 进行 SPDC,通道 1 和通道 2 中纠缠光子对的亮度分别为 3.21 kHz @ 1560 nm 和 5.31 kHz @ 1560 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Role of synthesis temperature in the formation of ZnO nanoparticles via the Sol-Gel process Editorial Board Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O Doping behavior and occurrence state of Na impurity in α-calcium sulfate hemihydrate prepared in Na2SO4 solution Quantum chemical study of trimethylindium and trimethylgallium gas-phase reaction pathways in InGaN MOCVD growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1