Dasari Yogeshwar , Ramjee Repaka , Navaneeth K. Marath
{"title":"A double serpentine channel liquid cooling plate for hotspot targeted cooling of lithium-ion batteries in a battery module","authors":"Dasari Yogeshwar , Ramjee Repaka , Navaneeth K. Marath","doi":"10.1016/j.ijthermalsci.2024.109521","DOIUrl":null,"url":null,"abstract":"<div><div>The study presents the development and performance analysis of a novel double serpentine channel cooling plate aimed at enhancing heat dissipation from hotspot-targeted cylindrical lithium-ion batteries within a battery module. Specifically, the research focuses on the comparative evaluation of the cooling performance between the double serpentine and single serpentine channel designs. Key parameters such as battery discharge rate, coolant flow velocity, and aluminum nanoparticle concentration are analyzed to evaluate their impact on battery thermal management. Finite element simulations are conducted to model thermal energy generation, fluid flow dynamics, and heat transfer behavior within the battery module. The results demonstrate that the single serpentine channel cooling plate (SSC-CP) reduces the maximum battery module temperature by 4.04 K and 11.01 K at 1C and 2C discharge rates, respectively, compared to natural cooling. Further enhancement in heat dissipation is observed with the incorporation of nanoparticles in the cooling fluid and an increase in coolant flow velocity. Additionally, the double serpentine channel cooling plate (DSC-CP) offers further improvement in thermal management by targeting hotspots within the battery module. Specifically, the DSC-CP reduces the maximum battery module temperature compared to the SSC-CP from 304.78 K to 303.70 K at 1C and from 304.89 K to 303.09 K at 2C. Furthermore, the DSC-CP reduce ΔT, the difference between the maximum and minimum temperature of the battery module, from 5.73 K to 4.69 K at 1C and from 6.97 K to 4.65 K at 2C, thereby improving temperature uniformity and reducing thermal gradients.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109521"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006434","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study presents the development and performance analysis of a novel double serpentine channel cooling plate aimed at enhancing heat dissipation from hotspot-targeted cylindrical lithium-ion batteries within a battery module. Specifically, the research focuses on the comparative evaluation of the cooling performance between the double serpentine and single serpentine channel designs. Key parameters such as battery discharge rate, coolant flow velocity, and aluminum nanoparticle concentration are analyzed to evaluate their impact on battery thermal management. Finite element simulations are conducted to model thermal energy generation, fluid flow dynamics, and heat transfer behavior within the battery module. The results demonstrate that the single serpentine channel cooling plate (SSC-CP) reduces the maximum battery module temperature by 4.04 K and 11.01 K at 1C and 2C discharge rates, respectively, compared to natural cooling. Further enhancement in heat dissipation is observed with the incorporation of nanoparticles in the cooling fluid and an increase in coolant flow velocity. Additionally, the double serpentine channel cooling plate (DSC-CP) offers further improvement in thermal management by targeting hotspots within the battery module. Specifically, the DSC-CP reduces the maximum battery module temperature compared to the SSC-CP from 304.78 K to 303.70 K at 1C and from 304.89 K to 303.09 K at 2C. Furthermore, the DSC-CP reduce ΔT, the difference between the maximum and minimum temperature of the battery module, from 5.73 K to 4.69 K at 1C and from 6.97 K to 4.65 K at 2C, thereby improving temperature uniformity and reducing thermal gradients.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.