Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-11-15 DOI:10.1016/j.neucom.2024.128877
He Fu , Cailing Wang , Zhanlong Chen
{"title":"Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network","authors":"He Fu ,&nbsp;Cailing Wang ,&nbsp;Zhanlong Chen","doi":"10.1016/j.neucom.2024.128877","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128877"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016485","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于修改后 CBAM 的网络,为高光谱图像分类自适应选择光谱空间特征
卷积神经网络(CNN)在高光谱图像(HSI)分类中表现出强大的能力。然而,如何根据高光谱图像中不同尺度的信息自适应地调整 CNN 的感受野(RF)大小,以实现光谱空间特征的自适应选择,仍然是一个挑战。在本文中,我们修改了卷积块注意模块(CBAM),并提出了一种基于修改后 CBAM 的网络(MCNet),以自适应地选择频谱空间特征进行人机交互分类。其中,修改后的 CBAM 不仅能使模型根据 HSI 中不同尺度的信息调整其 RF 大小,还能使模型实现对重要光谱和空间特征的联合关注。这对于自适应地选择更具描述性和鉴别性的光谱空间特征非常重要。在印度松树、肯尼迪航天中心、帕维亚大学和博茨瓦纳的 HSI 数据集上,将提出的 MCNet 与目前流行的方法进行了比较。结果表明,在总体准确率、平均准确率和 Kappa 方面,MCNet 的分类结果优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1