Influence of Ag-Bi2S3 nanocomposites for highly sensitive and selective Cl2 gas sensors: Synthesis, characterization, and gas sensing performance

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2024-11-02 DOI:10.1016/j.sse.2024.109024
Gangadhar Bandewad , Chetan Kamble , Sunil Pawar
{"title":"Influence of Ag-Bi2S3 nanocomposites for highly sensitive and selective Cl2 gas sensors: Synthesis, characterization, and gas sensing performance","authors":"Gangadhar Bandewad ,&nbsp;Chetan Kamble ,&nbsp;Sunil Pawar","doi":"10.1016/j.sse.2024.109024","DOIUrl":null,"url":null,"abstract":"<div><div>The gas sensing capabilities of Bi<sub>2</sub>S<sub>3</sub> chalcogenide have been actively enhanced and explored revealing its potential for high-performance Cl<sub>2</sub> gas detection under different environmental conditions and sensing configurations. This work successfully synthesized Bi<sub>2</sub>S<sub>3</sub> material via the SILAR method and further enhanced its sensing capabilities by fabricating Ag-Bi<sub>2</sub>S<sub>3</sub> nanocomposite. Both pristine Bi<sub>2</sub>S<sub>3</sub> and Ag-Bi<sub>2</sub>S<sub>3</sub> nanocomposite films underwent comprehensive characterization utilizing techniques such as FESEM, EDX, XRD, XPS, and RAMAN to analyze their morphological, structural, and chemical properties. Gas sensing capabilities were evaluated across a temperature range of 26–350 °C and varying Cl<sub>2</sub> gas concentrations (0.1–50 ppm). The findings reveal that the Ag-Bi<sub>2</sub>S<sub>3</sub> sensor demonstrates notably superior Cl<sub>2</sub> sensing response, particularly at an operational temperature of 150 °C, suggesting its promising potential for Cl<sub>2</sub> detection. The LOD has been calculated for Ag-Bi<sub>2</sub>S<sub>3</sub> sensor showing results of 0.150 better than pristine Bi<sub>2</sub>S<sub>3.</sub> HOMO-LUMO and PCA analysis for sensors has been studied to understand their capabilities with different gas sensing.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"223 ","pages":"Article 109024"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001734","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The gas sensing capabilities of Bi2S3 chalcogenide have been actively enhanced and explored revealing its potential for high-performance Cl2 gas detection under different environmental conditions and sensing configurations. This work successfully synthesized Bi2S3 material via the SILAR method and further enhanced its sensing capabilities by fabricating Ag-Bi2S3 nanocomposite. Both pristine Bi2S3 and Ag-Bi2S3 nanocomposite films underwent comprehensive characterization utilizing techniques such as FESEM, EDX, XRD, XPS, and RAMAN to analyze their morphological, structural, and chemical properties. Gas sensing capabilities were evaluated across a temperature range of 26–350 °C and varying Cl2 gas concentrations (0.1–50 ppm). The findings reveal that the Ag-Bi2S3 sensor demonstrates notably superior Cl2 sensing response, particularly at an operational temperature of 150 °C, suggesting its promising potential for Cl2 detection. The LOD has been calculated for Ag-Bi2S3 sensor showing results of 0.150 better than pristine Bi2S3. HOMO-LUMO and PCA analysis for sensors has been studied to understand their capabilities with different gas sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ag-Bi2S3 纳米复合材料对高灵敏度和选择性 Cl2 气体传感器的影响:合成、表征和气体传感性能
Bi2S3 Chalcogenide 的气体传感能力得到了积极的提升和探索,揭示了其在不同环境条件和传感配置下进行高性能 Cl2 气体检测的潜力。这项研究通过 SILAR 方法成功合成了 Bi2S3 材料,并通过制备 Ag-Bi2S3 纳米复合材料进一步增强了其传感能力。利用 FESEM、EDX、XRD、XPS 和 RAMAN 等技术对原始 Bi2S3 和 Ag-Bi2S3 纳米复合薄膜进行了全面表征,分析其形态、结构和化学特性。在 26-350 °C 的温度范围和不同的 Cl2 气体浓度(0.1-50 ppm)下,对其气体传感能力进行了评估。研究结果表明,Ag-Bi2S3 传感器的 Cl2 传感响应明显优于其他传感器,尤其是在 150 ℃ 的工作温度下,这表明它在 Cl2 检测方面具有很大的潜力。计算得出的 Ag-Bi2S3 传感器的 LOD 值比原始 Bi2S3 高 0.150。对传感器的 HOMO-LUMO 和 PCA 分析进行了研究,以了解它们对不同气体的传感能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Temperature influence on experimental analog behavior of MISHEMTs A novel method used to prepare PN junction by plasmon generated under pulsed laser irradiation on silicon chip Achieving 15.75% efficiency in solar cells: Advanced surface engineering using Tetra-Tert-Butyl-Tercarbazol-Benzonitrile and organic layer integration in n-type silicon wafer and hybrid Planar-Si systems Influence of Ag-Bi2S3 nanocomposites for highly sensitive and selective Cl2 gas sensors: Synthesis, characterization, and gas sensing performance Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1